Search

Published After
Published Before

Search Results

  • Occurrence of woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) in Hajdú-Bihar county, Hungary
    119-123
    Views:
    86

    Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) is native to East Asia, it spreads in several parts of the World and causes difficulties in plant protection, especially in maize. Difficulties in control of Eriochloa villosa originated from several reasons: seeds continue to germinate later in the season, significant part of seeds emerges from a deep layer of the soil, and the species is less susceptible to some herbicides applied to maize than other annual grass weeds.
    The first report on the occurrence of woolly cupgrass in Hungary was published in 2008, and it reported about the appearance of this species near to Gesztely village (Borsod-Abaúj-Zemplén county), however, no information has been added about spread of the weed in Hungary until now.
    A significant population was discovered next to Debrecen (Hajdú-Bihar county) in summer, 2011, and then weed associations were examined in maize, sunflower and stubble-fields on several km2 in the area to estimate the Eriochloa villosa infection. The weed species was found on every maize field bordering with a ground cover of 0.5-4%. Woolly cupgrass occurred inside of the 50% of maize fields, and reached a ground cover of 76% in case of most infected area, in addition it was found in sunflower and stubble-fields.
    The spread of woolly cupgrass is expected in this area, which requires the consideration of this species in the planning of weed management technologies.

  • Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes
    17-22
    Views:
    118

    From the aspect of the efficiency of maize production harvest grain moisture content shall be considered beside the amount of harvested grain yield. Hybrids with different genotypes and vegetation period length lose their moisture content different that is affected by row spacing and plant density – among agrotechnical production factors – depending on the given crop year. In the present research work three crop years with different weather conditions were studied (2013, 2014, and 2015). The small-plot field experiment was set up at the Látókép Field Research Centre of the University of Debrecen, Centre for Agricultural Sciences with four replications on a chernozem soil type. The effect of three factors was analysed in the experiment on yield amount and its moisture content. Factors were row spacing (45 and 76 cm), plant density (50, 70 and 90 thousand plants ha-1), while hybrids were of very early (Sarolta: FAO 290), early (DKC 4014: FAO 320, P 9175: FAO 330, P 9494: FAO 390) and medium (SY Afinity: FAO 470) ripening.

    In the crop year of 2013 the highest yield was produced – regarding the average of the hybrids – by the application of a row spacing of 45 cm (4.5%, 673 kg ha-1), however there was no significant difference between the yield of the populations of different row spacings. Significant difference (14.9%, 1751 kg ha-1; 6.3%, 583 kg ha-1) could be found in case of yield between different row spacing applications in 2014 and 2015. The effect of insufficiently distributed low amount of precipitation and lasting heat days in 2015 could be revealed in yield amounts and harvest grain yield moisture content results that were lower than in the previous years. In 2015 grain yield moisture content varied between 10.3 and 13.9% in case of a row spacing of 45 cm, while by 76 cm between 11.0 and 13.9%.

  • Usage of different remote sensing data in land use and vegetation monitoring
    7-12
    Views:
    114

    The use of remote sensing in forest management and agriculture is becoming more prominent. The rapid development of technology allowed the emergence of database suitable for precision application in addition to the previously used low-resolution and low data content images. The high resolution, hyperspectral images are not only suitable for separating the different land use categories and vegetation types but also for examining the soil characteristics and biophysical features of plants (Blackburn and Steel, 1999; Condit, 1970). We processed a multispectral satellite image (Landsat 7 ETM+) and a hypespectral areal image (DAIS 7915) about a farm on the plains and evaluated the different image classification methods. During our examinations, we examined the geometrical and radiometrical characteristics of images first, then assigning the training areas, we determined the spectral characteristics of land use categories. We performed a multispectral analysis for checking land use, where we compared controlled and uncontrolled classification systems to check their reliability. We used areal and spectral reductions to make the classifications more accurate and to reduce the length of calculations.

  • Technological development of sustainable maize production and its effect on yield stability
    379-388
    Views:
    156
    In 2015 and 2016, we examined the effect of NPK nutrients, sowing date and plant density on yield on typical meadow soil. The amount of precipitation was 282.0 mm in 2015 (January–September), 706.0 mm in 2016 and the 30-year averageis 445.8 mm.
    Agrotechnical factors:
    – Experiment a)
               5 Dow AgroSciences hybrid with three sowing dates and three plant densities
    – Experiment b)
    In 2015 eight, in 2016 ten hybrids with different genetic characteristics and growing seasons, with control (without fertilization), N80+PK and N160+PKtreatments, five plant densities (50–90 thousand) with 10 thousand plants difference between the different densities.
    In a drought year, we reached the higher yield in the earlier sowing date and with the lower lower plant density of 70 thousand plants ha-1-. The maximum yield, depending on the agrotechnical factors, was 10–12 t ha-1 in 2015, while in 2016 it was 14–16 t ha-1. Yield stability can be increased using hybrid-specific cultivation techniques.
  • Efficiency of Fertilization in Sustainable Wheat Production
    59-64
    Views:
    94

    In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
    In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
    The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
    Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
    Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects.

  • Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
    35-41
    Views:
    336

    The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.

    The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.

    The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.

    The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.

    Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.

  • Examination of different fungicides against Macrophomina phaseolina in laboratory conditions
    65-69
    Views:
    124

    In Hungary, sunflower is the third most important arable crop, which has a lot of pathogenic fungi. One of these fungi is the Macrophomina phaseolina, which is a well-known fungus in all over the world, since this pathogen has more than 700 host plants. In Hungary, several host plants can be found as well. The M. phaseolina produces microsclerotia, which can survive in the soil and residues for almost 10 years. For now, there is no efficient treatment against this pathogen because of this fungus, since it is extremely resistant and cannot be destroyed easily. The only effective treatment against the fungus is genetic defence. In this study, three different fungicides were tested in vitro against the fungus. The Mirage (prochloraz) seemed to be the most effective fungicide as it completely arrested the hyphal growth. In contrast, the Amistar Xtra (azoxystrobin and ciprochonazol) has only a minor effect on the growth of M. phaseolina. Thirdly, the Retengo (pyrachlostrobin) arrested the hyhpal growth of the fungus with 71% at 100 ppm, in other words, the use of this fungicide seems promising. 

  • The significance of biological bases in maize production
    61-65
    Views:
    159

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • The importance of millet production in regional production, with special emphasis on climate change
    141-146
    Views:
    137
    Regional production is a traditional production structure developed adjusting to the geographical, climatic, biological and soil conditions in given production regions, a certain territorial specification of agricultural production, and a type of farming that best fits the natural conditions and takes the biological needs of plant and animal species into account as fully as possible. The most probable element of risk in plant production is the changeable, extreme weather. That is the reason why the specific characteristics of the place of production and the characteristics of regional production should be considered to a greater extent. The establishment of the range of varieties appropriate for the place of production is the key issue in regional production. One of our historically grown cereal plants that perfectly fits regional production is millet. Due to its short growing season, favourable reproduction ratio and the fact that it is relatively undemanding, it used to be grown in larger quantities in the middle ages. Its good nutritional values made it an important food item, but over time, as a result of industrialisation and technological progress; it has been eclipsed by other cereal crops. In our country it is mainly used to cook porridge, but it is also used in the form of flour and as a base material in the spirit drinks sector. In the recent decades, millet has been applied only in a small area, mostly as a secondary crop in areas that dried out from drainage water in late spring, or as a replacement of extinct sowings due to its late sowing time. Water will be the most significant factor for the future of agriculture, especially considering climate change.
    My examinations took place in the area of the Institutes for Agricultural Research and Educational Farm of University of Debrecen, in the Research Institute of Nyíregyháza, in a small-plot experiment with four replications in 2016.
  • Effects of paraffine oil on leaf and berry mycobiota on two grape varieties
    61-66
    Views:
    190

    Application of fungicides have advantages and also some direct or indirect disadvantages, such as imbalance and/or fungicide resistance in microbe population. To avoid these problems the development of alternative, eco-friendly methods like mostly spraying with oils are in the focus nowadays. The investigations of the effects of fungicides on microbiota in some cultivations can give a more complex view to this topic and developmental possibilities. In the present study, our aim was testing of the effects of paraffine oil (as alternative fungicide) on microbial properties (CFU and rate of filamentous fungi and yeasts) of Chardonnay and Kékfrankos leaves and berries.

    Our results from 2014 showed that the application of paraffine oil as sole spray agent can decrease the presence of saprophytic filamentous fungi on the berries of Chardonnay (susceptible for fungal infections). In the case of Kékfrankos berries opposite properties were observed, which may be the result of the absorption of oil by the thick wax layer of this variety. The oil treatment did not affect the yeast population of Chardonnay and Kékfrankos berries contrary to negative effect of the regular pesticide treatment. The selective fungicide effect of paraffine oil against filamentous fungal population caused the accumulation of yeast cells in the mycobiota of grape berries. The careful use of this yeasts in spontaneous fermentation can improve the aroma profile of wines. The year of 2015 did no prefer the growth of fungi, therefore no interesting properties were detected in the mycobiota of grape varieties. The occurence of the harmful saprophytic filamentous fungi predicted to be increased in mild climate agricultures as the result of the climate change.

    In summary, the paraffine oils are seem to be promising tools for the eco-friendly control of harmful fungi of grapes.

  • Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
    203-207
    Views:
    111

    The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
    With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
    The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
    The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
    compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

  • Economics of site specific crop density in precision sunflower (Helianthus annuus L.) production
    91-96
    Views:
    67

    In this research, the crop density of sunflower was examined, which, thanks to the tools available for precision crop production and knowledge of the market environment of sunflower production, best fits the heterogeneous areas of the given production zones and meets the economic requirements. These components together directly influence the effectiveness of sunflower production. In the year of 2021 and 2022, we carried out a site-specific crop density sunflower experiment in two fields with the same soil type, by sowing significantly different amounts of seeds within the given zones. We have established that the sunflower, although a plant with excellent adaptability, reacts sensitively to the place of production and the effect of the year, in zones with heterogeneous productivity, and shows a reaction to sowing with a variable number of seeds per zone, even when examined based on economic aspects.

  • Impact of fertilisation and the fluctuation of precipitation on the ecophysical and production characteristics of maize
    39-44
    Views:
    148

    The aim of this study was to analyse the problems caused by the unfavourable (dry and wet) weather and its consequences in the R1 growth stage of maize (Zeamays L.), as well as their management and the alternatives of preventing yield reduction by using agrotechnical measures fertilisation, irrigation), also, we wanted to examine whether the Chl content measured in the R1 growth phase provides reliable prediction of yield per hectare.

    The examinations were carried out in a moderately warm and dry production area at the Látókép Experiment Site of the University of Debrecen, Centre for Agricultural Sciences on calcareous chernozem soil in 2007 and 2008. Six different N doses (0,30,60,90,120,150 kg ha-1) were used in the irrigated and non-irrigated treatments of the field experiment.

    The results showed that there is a significant strong positive correlation between Chl content and yield both in the non-irrigated (P<0.001, R=0.777) and the irrigated (P<0.001, R=0.801) treatment. The results of the correlation analyses performed yearly showed that weather factors significantly influence the strength of correlations, but these correlations are always positive.

    The Chl content of maize leaves provided a reliable prediction of yield per hectare in the R1 growth stage. In the irrigated treatment, the correlation is always closer than in the non-irrigated treatment.

  • Effect of tillage practices, fertilizer treatments and crop rotation on yield of maize (Zea mays L.) hybrids
    43-48
    Views:
    165

    This research was conducted at the University of Debrecen Látókép Research Station and is part of an ongoing long-term polyfactorial experiment. The impact of three tillage systems (Mouldboard plowing-MT, Strip tillage-ST, Ripper tillage-RT) and two levels of fertilizer treatments (N80 kg ha-1, N160 kg ha-1) along with a control (N0 kg ha-1) on the yield of maize hybrids (Armagnac- FAO 490 & Loupiac-FAO 380) cultivated in rotation with winter wheat was evaluated during a two-year period (2017–2018).

    Amongst the three tillage treatments evaluated, ripper tillage (RT) had the highest average yield (10.14 t ha-1) followed by mouldboard tillage (MT) and strip tillage (ST) with 9.84 and 9.21 t ha-1 respectively. Yield difference between RT and MT was not significant (P>0.05), as compared to ST (P<0.05). Soil moisture content varied significantly with tillage practices and was highest in ST, followed by RT and MT (ST>RT>MT). Yield of RT was 7–9% higher than MT in monoculture plots, while MT reign superior in biculture plots (monoculture: RT>MT>ST; biculture: MT>RT>ST).

    A positive interaction between tillage and fertilization was observed, with higher yield variation (CV=40.70) in the non-fertilized (N0) plots, compared to those which received the N80 (CV=19.50) and N160 kg ha-1 (CV=11.59) treatments.

    Incremental yield gain from increase fertilizer dosages was significantly higher in monoculture, compared to biculture. There was no significant difference in yield between N160 and N80 in the biculture plots (12.29 vs 12.02 t ha-1). However, in monoculture plots, N160 yield was 23% higher than the N80 kg ha-1 (N160=11.74 vs N80=9.56 t ha-1).

    Mean yield of maize in rotation with winter wheat was 28% (2.47 tons) higher than monoculture maize. The greatest benefit of crop rotation was observed in the control plots (N0) with an incremental yield gain of 4.39 tons ha-1 over monculture maize (9.92 vs 5.43 t ha-1).

    Yield increased with higher fertilizer dosages in irrigated plots. Fertilizer application greatly increased the yield of maize and accounted for 48.9% of yield variances. The highest yield (11.92 t ha-1) was obtained with N160 kg ha-1 treatment, followed by N80 kg ha-1 (10.38 t ha-1) and N0 kg ha-1 (6.89 t ha-1) respectively.

    Overall mean yield difference between the two hybrids was not statistically significant, however, yield of FAO 380 was 3.9% higher (9.06 vs. 8.72 t ha-1) than FAO 490 in monoculture plots, while in biculture plots, FAO 490 was 4.1% higher than FAO 380.

    Average yield in 2018 was 13.6% (1.24 t ha-1) higher than 2017 for the same set of agrotechnical inputs, thus, highlighting the significant effect of cropyear.

    Armagnac (FAO 490) cultivated in rotation with winter wheat, under ripper tillage and N80 kg ha-1 is the best combination of treatments for optimum yield.

  • The effect of and interaction between the biological bases and the agrotechnical factors on maize yield
    83-87
    Views:
    144
    The effect of and interaction between the biological bases and the agrotechnical factors on maize yield In our research, we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons.
    We analysed the correlation between the nutrient supply and the yield of maize hybrids with a control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
    In 2015, the highest yield was produced by hybrid P9241 with N80+PK and 70 thousand plants per hectare. With the N160+PK fertilizer dosage, the same hybrid responded the best, followed by hybrids P9486 and DKC4717. Using the same fertilizer treatment, the 80 thousand plants per hectare population density resulted in decrease in the yield with most of the examined hybrids. In 2016, with the increase in the number of plants per hectare, even with non-fertilised treatment (control treatment), the yield could be increased in the case of each hybrid.
    Averaged over the different hybrids and fertilizer treatments, applying 80 thousand plants ha-1 instead of 60 thousand resulted in 1.0 ha-1 yield increase. In 2017, the number of plants had a slighter effect. With N160+PK treatment, in most cases no significant difference can be observed. The value of LSD5%: plant number: 0.20 t ha-1, hybrid: 0.28 t ha-1, interaction: 0.48 t ha-1. With N160+PK treatment, the hybrids produced yields between 10.07 and 12.45 t ha-1. When examining the three years in the average of the number of plants, with treatment without fertilisation, the average yield of hybrids reached 7.53 t ha-1. With N80+PK treatment, this value was 9.71 t ha-1 and with doubling the fertilizer dosage, this value increased to 10.42 t ha-1. No economic profit was gained as a result of applying double dosage of fertilizer; therefore, the N80+PK dosage can be considered ideal.