Search

Published After
Published Before

Search Results

  • The impact of various grape stock cultivars on the As, Cu, Co and Zn content of the grape berry (must, seed)
    39-44
    Views:
    133

    Scientific research from the last decades showed that the inappropriate industrial and agricultural production caused an abnormal increase of the potentially toxic elements in the soil. Unfortunately the acidification of the soil is an increasing problem in Hungary. According to Várallyay et al. (2008) 13% of the Hungarian soils are highly acid. Accumulation of toxic elements differs in the genetically diverse plant species. The root of the plant constitutes a filter so that the rootstock is also kind of a filter system, which may prevent that the scion part (such as berry) accumulate high levels of various potentially toxic elements from the soil. The aim of research was to determine how different grape rootstocks influence the As, Co, Cu and Zn content of the musts and seeds. Thus, specifying which of the grape rootstocks takes up the lowest level of these 4 elements (As, Co, Cu and Zn), and accumulates in berries, so could reduce the potentially toxic element load of the grape berries. The grape rootstock collection of the University of Debrecen was set up in 2003 in 3x1 m spacing on immune sandy soil. Grafting of ‘Cserszegi fűszeres’ was started in 2010. We could evaluate yields harvested from 12 rootstock varieties of the experiment in October 2011. We obtained valuable differences in the arsenic, copper, cobalt and zinc concentrations of musts and seeds of ‘Cserszegi fűszeres’ grafted into different rootstocks. The results obtained from the 2011 harvest support the statement that the choice of rootstock might be an important factor to increase food safety. The differences in concentration of the four elements observed in case of the rootstock may have been caused on one hand by the rootstock effect, and on the other hand, the vintage effect has a very significant impact on the vines element uptake. Several years of experimental results will be needed to answer these questions.

  • Examination of the element content of beers
    117-121
    Views:
    122

    Beer is a complex mixture of more than 800 several components, the most important ones are the minerals from this. Minerals originate especially from water and malt. In this work we measured the mineral contents of some own-brewed beer samples. We compared the results with the mineral contents of the water used as raw material of beer.

  • Selenium speciation analysis of selenium-enriched food sprouts
    23-28
    Views:
    182

    In this present study, we prepared selenium-enriched pea and wheat sprouts. During our research we aimed not only to measure the total selenium content of the sprouts but to identify different selenium species.

    Scientifical researches show why the analytical examination of different selenium (Se) species is necessary: consumption of all kind of Se-species is useful for a person who suffers in selenium deficit, while there is significant difference between effects of different Se-species on person, in whose body the Se-level is just satisfactory. Biological availability, capitalization, accumulation, toxicity of Se-species are different, but the main difference was manifested in the anti-cancer effect of selenium.

    During our research selenium was used in form of sodium selenite and sodium selenate, the concentration of the solutions used for germination was 10 mg dm-3. Control treatment meant germination in distilled water. Total selenium content of sprout samples was measured after microwave digestion by inductively coupled plasma mass spectrometry (ICP-MS). Different extraction solvents were applied during sample preparation in order to separate different Se-species (0.1 M and 0.2 M HCl or 10 mM citric acid buffer). We wanted the following question to be answered: Which extraction solvent resulted the best extraction efficiency? Selenium speciation analysis of sprout sample extracts was performed by high performance liquid chromatography with anion exchange column, detection of selenium species was performed by ICP-MS.

    Evaluating our experimental results we have been found that significant amount of selenium of inorganic forms used during germination transformed into organic selenium compounds. There was difference between the amount of Se-species in pea and wheat sprouts and selenium uptake and repartition of selenium species were depended on Se-form used during germination. In addition the chromatogram analysis made us clear as well, that the citric acid solvent proved to be the most effective extraction solvent during sample preparation int he view of organic Se species.

  • Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
    11-14
    Views:
    182

    In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.

    In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.

    In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.

    In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.

  • Determination of the validation parameters of inductively coupled plasma mass spectrometer (iCP-mS): response curve linearity in the case of arsenic and selenium
    67-71
    Views:
    130

    In the field of elemental analysis inductively coupled plasma mass spectrometers (ICP-MS) have the best sensitivity that means the lowest limit of detection, subsequently their applicability for the detection of essential and toxic elements in foods and foodstuffs is prominent. For the most elements could be measured the detection limit is between μg kg-1 (ppb) and ng kg-1 (ppt) e.g. for arsenic and selenium.

    Considering an analytical task (sample type, analytes and their concentration, pretreatment procedure etc.) the applicability of an analytical method is determined by its performance characteristics. The purpose of validation is to ensure that the method would be used fulfills the requirements of the given task. In this article we describes one of the performance characteristics, the linearity, and the whole validation procedure aims measurement of arsenic and selenium in foodstuffs by inductively coupled plasma mass spectrometer (Thermo XSeries I.); but because of the limited number of pages the results are demonstrated only for arsenic.

    The linearity of calibration was evaluated in three concentration ranges (0.1–1 μg l-1; 1–10 μg l-1; 10–50 μg l-1), with nine line-fit possibilities (without weighting, weighting with absolute or relative deviation; with or without forcing the curve through blank or origin) and different methods (graphical examination, correlation coefficient, analysis of variance).

    The best method to ensure the linearity of correspondence between signal and concentration was the ANOVA test. In view of calibrations it was found that the range of 10–50 μg l-1 could be regarded as linear with four line-fit possibilities, and was non-linear between 0.1–1 μg l-1 and 1–10 μg l-1.

  • Effect of molybdenum treatment on the element uptake of plants in a long-term experiment
    121-125
    Views:
    101

    Molybdenum as a constituent of several inmportant enzymes is an essential micorelement. It can be found in all kind of food naturally at low level, however, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants. Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behaviour of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop.
    In this work we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction.
    However, in most of the plants we studied increasing molybdenum-treatment enhanced cadmium-uptake. We have found the most significant cadmium-accumulation in the case of pea, spinach and red beet.

  • Optimization of inductively coupled plasma mass spectrometer parameter’s to measuring arsenic and selenium
    59-64
    Views:
    159

    In the last decades an increased interest has been evolved about arsenic and selenium. The aim is to understand the environmental, agricultural and biological role of the these elements. In case of arsenic the mayor reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking waterbases of some Asian countries besides Hungary. The toxicity of higher level selenium content is also known, nevertheless selenium is essential for some biological functions. Considering its esssentiality, in our country the insufficient selenium intake rate couse lack of selenium. Measuring the concentrations of these elements are cruital but not satisfactory information, but the speciation, that is the form of an element presented in a sample is also required. 
    In both cases the most suitable method to determine concentration is the inductively coupled plasma mass spectrimetry. My objective was to optimase the changeable parameters of the ICP-MS for reaching the lowest (the best) detection limit. For this porpuse I have investigated the effect of parameter change on nett signal intensity and relative signal intensity. With the optimased parameter settings the limit of detection for arsenic and selenium were determined, which are 0,032 ng cm-3 for arsenic, and 0,097 ng cm-3 for
    selenium.

  • Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
    203-207
    Views:
    110

    The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
    With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
    The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
    The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
    compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

  • Parameter optimization of an inductively coupled plasma mass spectrometer for measuring arsenic and selenium
    81-85
    Views:
    143

    In the last decades, an increased interest has evolved in arsenic and selenium. The aim is to understand the environmental, agricultural and biological roles of these elements. In the case of arsenic, the major reasons are the relatively high concentration of arsenic in marine biota (mg kg-1) and the arsenic contaminated drinking water bases of some Asian countries, as well as Hungary. The toxicity of higher level selenium content is also known; nevertheless, selenium is essential for several biological functions. Considering its essentialness, in our country, the insufficient selenium intake rate causes a lack of selenium. Measuring the concentrations of these elements provides crucial, but unsatisfactory information, as the speciation, i.e. the form of an element presented in a sample is also required.
    In both cases, the most suitable method to determine concentration is inductively coupled plasma mass spectrometry (ICP-MS). Our objective was to optimize the variable parameters of the ICP-MS to attain the lowest (the best) detection limit. For this purpose, we investigated the effect of parameter change on net signal intensity and relative signal intensity. With the optimized parameter settings, the limits of detection for arsenic and selenium were determined, which are 0,032 ng dm-3 for arsenic, and 0,097 ng dm-3 for selenium. 

  • Comparison of the sample preparation methods worked out for the examination of the element content of wine
    77-82
    Views:
    112

    The examination of the potentially toxic elements content of the wines is not easy task, because the most elements are in little concentration (mg kg-1 or μg kg-1) in the wine and the wines contain great amount of organic matrix. The efficient sample preparation is essential for the accurate determination of element content. The eim of our research was to determine which sample preparation method will be the most efficient in examination of wines with ICP technology. The examined wine sample was a 2008 Chardonnay from the Eger wine region. We did the sample preparation and analysis examination in University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Institute of Food Science, Quality Assurance and Microbiology.
    We did the analysis examinations with ICP- MS (inductively coupled plasma mass spectroscopy). We always did the sample preparations and the examinations in three times rehearsal. The applied sample preparation methods: dilution with distilled water, open digestion and microwave digestion. 
    We were able to measure B, Al, Mn, Fe and Zn with only dilution and open sample preparation. In the smaller quantity present Sr and Ba were measurable in the wine in the case of all three methods well. We were able to measure the Co with dilution and open digestion method,  while Cr, Ni, and Te with only dilution method. In the case of arsenic we were not able to measure reliable result with dilution and open digestion method because of organic matrix and other components
    (alcohols, monosaccharides, polysaccharides, polyalcohols and inorganic salts). On the whole we are able to say that in the case of certain elements (B, Mn, Fe, Zn, Sr, Ba) the open digestion and dilution sample preparation is applicable well, however, in the case of certain elements (As, Al, V, Cr, Se, Mo, Cd, Hg, Pb) we have to develop the methods. It may be development of one of the way, if we develop sample preparation methods to examined element specifically and not
    to wine generally.

  • Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
    75-79
    Views:
    123

    Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
    levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet.