Published After
Published Before
Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological ...degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.
Show full abstract
18
39
The summarizing data collection of our study has been carried out in the scope of the FP7-REGPOT-2010-1 ’UD_AGR_REPO’ project as a part of the cooperation with the University of Lincoln. The University of Lincoln is an important partner of the project, the knowledge transfer activities that have been carried jointly with them are multilateral.... One of the most important cooperation areas is the analysis of rural areas, rurality itself, determination of breakout points, exploration of alternative income sources, diversification possibilities. Some part of the work of the University of Lincoln on the field of rural development is based on the assessment and documentation global similarities and differences of rural areas. Present study also contributes to that work, it has been prepared on the request of the University of Lincoln with the aim of providing insight into the special political and economic changes/processes that took place in Hungary, and through them into the structure and operation of the unique Hungarian rural areas. The study first positions the definition of rurality and rural areas into context on the basis of official EU and Hungarian legal classification. Then it covers the important agricultural nature of Hungary, which significantly determines the possibilities and properties of Hungarian rural areas. The further description of rural areas is completed by some historical summary, the introduction of ownership changes, detailed description of employment and income conditions and finally by the listing of breakout points of rural areas as a conclusion.
Show full abstract
15
31
The impact of the climatic factors of crop year on the relative chlorophyll content of maize was examined for three years. The examinations were carried out on the Látókép Experiment Site of the University of Debrecen on calcareous chernozem soil in a small-plot, non-irrigated long-term field experiment with strip plot design. In addition to a ...non-fertilised (control) treatment, nitrogen (N) fertiliser doses were applied as base and top dressing. The 60 and 120 kg N ha-1 base dressing doses were followed by two top dressing doses at the V6 and V12 phenophases. Averaged over the different fertiliser treatments, SPAD readings increased in all three years as the growing season progressed. The highes SPAD value increase was observed in the average crop year (2017) at the V12 phenophase (11.8), which further increased at the R1 phenophas, by 3,7. No significant Spad value difference was observed between the average (2017) and the dry year (2018) at the V6 growth phase. However, in the wet crop year (2016), the V690 treatment provided the statistically highest relative chlorophyll content (46.8). At the V12 phenophase, the base dressing dose of 120 kg N ha-1+30 kg N ha-1 (V6150) showed to be successful in two years (2016 and 2018), while in 2017, the base dressing dose of A60 was successful. The impact of crop year on relative chlorophyll content can be clearly shown at the R1 growth stage. In all three years, the significantly highest relative chlorophyll content could be achieved at different nutrient levels: A60 in 2016, V6150 in 2017 and V690. In a wet year (2016), higher yield could be achieved as a result of the 60 kg N ha-1 base dressing and 30 kg N ha-1 at the V6 growth stage (V690) as top dressing in comparison with 2017 and 2018, when higher fertiliser dose (120 kg N ha-1 base dressing and 30 kg N ha-1top dressing at the V6 growth stage) was needed to achieve a significant yield surplus. Altogether, averaged over the different treatments, the highest yield (12.48 t ha-1) was observed in the wet year, when the relative chlorophyll content was also the highest (50.6).
Show full abstract
52
47
1 - 3 of 3 items