Search
Search Results
-
The effect of augmented reality assisted geometry instruction on students' achiveement and attitudes
177-193Views:61In this study, geometry instruction's academic success for the students and their attitudes towards mathematics which is supported by education materials of Augmented Reality (AR) and its effect on the acceptance of AR and its usage by teachers and students have been researched. Under this research, ARGE3D software has been developed by using augmented reality technology as for the issue of geometric objects that is contained in the mathematics curriculum of 6th class of primary education. It has been provided with this software that three-dimensional static drawings can be displayed in a dynamic and interactive way. The research was conducted in two different schools by an experiment and control group. In the process of data collection, Geometry Achievement Test (GAT), Geometric Reasoning Test (GRT), Attitudes Scale for Mathematics (ASM), students' math lecture notes, semi-structured interviews with teachers and students and observation and video recordings were used. Results showed that geometry instruction with ARGE3D increased students' academic success. In addition, it was found that geometry instruction with ARGE3D became more effective on students' attitudes that had negative attitudes towards mathematics and it also provided support to reduce fear and anxiety. -
Dynamic methods in teaching geometry at different levels
1-13Views:37In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]). -
Teaching polygons in the secondary school: a four country comparative study
29-65Views:40This study presents the analysis of four sequences of videotaped lessons on polygons in lower secondary schools (grades 7 and 8) taught by four different teachers in four different countries (Belgium, Flanders, England, Hungary and Spain). Our study is a part of the METE project (Mathematics Educational Traditions in Europe). The aims and methodology of the project are described briefly in the introduction. In the next section of this paper we describe various perspectives on teaching and learning polygons which were derived from the literature, concerning the objectives, conceptual aspects and didactic tools of the topic. The next two sections introduce the main outcomes of our study, a quantitative analysis of the collected data and a qualitative description linked to the perspectives on teaching polygons. We conclude by discussing some principal ideas related to the theoretical and educational significance of this research work. -
Learning and teaching combinatorics with Sage
389-398Views:45Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
Teaching graph algorithms with Visage
35-50Views:29Combinatorial optimization is a substantial pool for teaching authentic mathematics. Studying topics in combinatorial optimization practice different mathematical skills, and because of this have been integrated into the new Berlin curriculum for secondary schools. In addition, teachers are encouraged to use adequate teaching software. The presented software package "Visage" is a visualization tool for graph algorithms. Using the intuitive user interface of an interactive geometry system (Cinderella), graphs and networks can be drawn very easily and different textbook algorithms can be visualized on the graphs. An authoring tool for interactive worksheets and the usage of the build-in programming interface offer new ways for teaching graphs and algorithms in a classroom. -
The development of geometrical concepts in lower primary mathematics teaching: the square and the rectangle
153-171Views:43Our research question is how lower primary geometry teaching in Hungary, particularly the concept of squares and rectangles is related to the levels formulated by van Hiele. Moreover to what extent are the concrete activities carried out at these levels effective in evolving the concepts of squares and rectangles.
In the lower primary geometry teaching (classes 1-4) the first two stages of the van Hiele levels can be put into practice. By the completion of lower primary classes level 3 cannot be reached. Although in this age the classes of concepts (rectangles, squares) are evolved, but there is not particular relationship between them. The relation of involvement is not really perceived by the children. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 28 – January 30, 2011, Satu Mare, Romania
159-179Views:13The meeting Researches in Didactics of Mathematics and Computer Science was held in Satu-Mare, Romania from the 28th to the 30th of January, 2011. The 46 Hungarian participants – including 34 lecturers and 12 PhD students – came from 3 countries, 14 cities and represented 20 institutions of higher education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
GeoGebra in mathematics teaching
101-110Views:45GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 20 - January 22, 2012, Levoča, Slovakia
205-230Views:27The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Levoca, Slovakia from the 20th to the 22th of January, 2012. The 66 participants – including 54 lecturers and 25 PhD students – came from 6 countries, 20 cities and represented 33 institutions of higher and secondary education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
Straight line or line segment? Students’ concepts and their thought processes
327-336Views:100The article focuses on students’ understanding of the concept of a straight line. Attention is paid to whether students of various ages work with only part of a straight line shown or if they are aware that it can be extended. The presented results were obtained by a qualitative analysis of tests given to nearly 1,500 Czech students. The paper introduces the statistics of students’ solutions, and discusses the students’ thought processes. The results show that most of the tested students, even after completing upper secondary school, are not aware that a straight line can be extended. Finally, we present some recommendations for fostering the appropriate concept of a straight line in mathematics teaching.
Subject Classification: 97C30, 97D70, 97G40
-
Comparative geometry on plane and sphere: didactical impressions
81-101Views:4Description of experiences in teaching comparative geometry for prospective teachers of primary schools. We focus on examples that refer to changes in our students' thinking, in their mathematical knowledge and their learning and teaching attitudes. At the beginning, we expected from our students familiarity with the basics of the geographic coordinate system, such as North and South Poles, Equator, latitudes and longitudes. Spherical trigonometry was not dealt with in the whole project. -
Visualisation in geometry education as a tool for teaching with better understanding
337-346Views:166In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.
Subject Classification: 97U10, 97G10
-
Nice tiling, nice geometry!?!
269-280Views:38The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference. -
Teaching of old historical mathematics problems with ICT tools
13-24Views:21The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way. -
What does ICT help and does not help?
33-49Views:115Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
Bruner's too.
At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.Subject Classification: 97U70
-
A role of geometry in the frame of competencies attainment
41-55Views:30We discuss aspects of the Education Reform from teaching to educational system. In this context we recognize some problems in recognition of some competencies that students need to achieve and we present how we have developed the measurement method of spatial abilities and problem solving competence. Especially, we investigate how students use spatial visualization abilities in solving various problems in other mathematical course. We have tested how students use their spatial abilities previously developed in geometry courses based on conceptual approach to solve a test based on procedural concept in Mathematical Analysis course. -
Balanced areas in quadrilaterals - Anne's Theorem and its unknown origin
93-103Views:91There are elegant and short ways to prove Anne's Theorem using analytical geometry. We found also geometrical proofs for one direction of the theorem. We do not know, how Anne came to his theorem and how he proved it (probably not analytically), it would be interesting to know. We give a geometric proof (both directions), mention some possibilities – in more details described in another paper – for using this topic in teaching situations, and mention some phenomena and theorems closely related to Anne's Theorem.
Subject Classification: G10, G30
-
The "Teaching Mathematics and Computer Science" Journal logo's mathematical background
55-65Views:3In the present contribution we give an elementary technology for drawing the geodesics, paracycles and hypercycles on the pseudosphere. -
Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
123-132Views:90In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.
Subject Classification: 97D50, 97G40
-
Thoughts on Pólya’s legacy
157-160Views:132There is a saying, "the older I get, the smarter my parents become." What it means, of course, is that the more we learn, the more we appreciate the wisdom of our forebears. For me, that is certainly the case with regard to George Pólya.
There is no need to elaborate on Pólya's contributions to mathematics – he was one of the greats. See, for example, Gerald Alexanderson's (2000) edited volume The Random Walks of George Pólya, or Pólya's extended obituary (really, a
53-page homage) in the November 1987 Bulletin of the London Mathematical Society (Chung et al., 1987). Pólya was one of the most important classical analysts of the 20th century, with his influence extending into number theory, geometry, probability and combinatorics. -
The hyperbola and Geogebra in high-school instruction
277-285Views:35In this article the results of teaching/learning hyperbola and its characteristics in high-school using computers and GeoGebra are shown. Students involved in the research attend Engineering School "Nikola Tesla" in Leposavic, Serbia. The aim of the research was to define ways and volume of computer and GeoGebra usage in mathematics instruction in order to increase significantly students' mathematical knowledge and skills. -
Report on the "English Language Section of Varga Tamás Days 2009"
169-175Views:33The 9th English Language Section as a part of the Varga Tamás Days was organised by the Department of Mathematics Education at the Teacher Training Institute of the Eötvös Loránd University. We report on the talks and the following discussions in this section. -
"How to be well-connected?" An example for instructional process planning with Problem Graphs
145-155Views:96Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.
Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30
-
Zur Visualisierung des Satzes von Pythagoras
217-228Views:13In this article we make a study of a not-classical visualization of the theorem of Pythagoras using methods of elementary school geometry. We find collinear points, copoint straight lines and congruent pairs of parallelograms. The configuration of their midpoints induces a six-midpoint and a four-midpoint theorem.