Search
Search Results
-
Inquiry based mathematics education and the development of learning trajectories
63-89Views:856This article is based on the panel on inquiry based mathematics education and the development of learning trajectories held at the VARGA 100 Conference. After an introduction presenting the theme and organization of the panel, this article focuses on the diversity of conceptualizations of inquiry based education existing today in mathematics education and their influence on the vision and development of learning trajectories. More precisely, it considers the conceptualizations respectively associated with Realistic Mathematics Education, Genetic Constructivism, Tamás Varga’s educational approach and the Anthropological Theory of the Didactic, presented by the panellists, and also shows the efforts undertaken in European projects to reach consensusal visions.
Subject Classification: 97C30Q, 97D10, 97D20, 97D30, 97D40, 97D50
-
Tamás Varga’s reform movement and the Hungarian Guided Discovery approach
11-28Views:155This paper presents Tamás Varga’s work focusing especially on the Hungarian Complex Mathematics Education reform project led by him between 1963 and 1978 and the underlying conception on mathematics education named “Guided Discovery approach”. In the first part, I describe Varga’s career. In the second part, I situate his reform project in its international and national historical context, including the international “New Math” movement and the “Guided Discovery” teaching tradition, something which is embedded in Hungarian mathematical culture. In the third part, I propose a didactic analysis of Varga’s conception on mathematics education, underlining especially certain of its characteristics which can be related to Inquiry Based Mathematics Education. Finally I briefly discuss Varga’s legacy today.
Subject Classification: 97-03, 97B20, 97D20, 97D40, 97D50
-
Better understanding mathematics by algorithmic thinking and computer programming
295-305Views:117Tamás Varga’s mathematics education experiment covered not just mathematics, but also other related topics. In many of his works he clearly stated that computer science can support the understanding of mathematics as much as mathematics supports informatics. On the other hand, not much later than the introduction of the new curriculum in 1978, personal computers started to spread, making it possible to teach informatics in classes and in extracurricular activities. Varga’s guided discovery approach has a didactic value for other age groups as well, not only in primary school. Its long-lasting effect can be observed even in present times. Having reviewed several educational results in the spirit of Tamás Varga, we have decided to present an extracurricular course. It is an open study group for age 12-18. Students solve problems by developing Python programs and, according to our experiences, this results in a deeper understanding of mathematical concepts.
Subject Classification: 97B10, 97B20, 97D50, 97N80, 97P20, 97P30, 97P40, 97P50, 97U70
-
Some logical issues in discrete mathematics and algorithmic thinking
243-258Views:98The role of logic in mathematics education has been widely discussed from the seventies and eighties during the “modern maths period” till now, and remains still a rather controversial issue in the international community. Nevertheless, the relevance of discrete mathematics and algorithmic thinking for the development of heuristic and logical competences is both one of the main points of the program of Tamás Varga, and of some didactic teams in France. In this paper, we first present the semantic perspective in mathematics education and the role of logic in the Hungarian tradition. Then, we present insights on the role of research problems in the French tradition. Finely, we raise some didactical issues in algorithmic thinking at the interface of mathematics and computer science.
Subject Classification: 97E30
-
A Nim like game and a machine that plays it: a learning situation at the interface of mathematics and computer science
317-326Views:119The purpose of this work is to take a didactic look at a learning situation located at the interface between mathematics and computer science. This situation offers a first approach to the concept of artificial intelligence through the study of a reinforcement learning device. The learning situation, inspired by the Computer Science Unplugged approach, is based on a combinatorial game, along with a device that learns how to play this game. We studied the learning potential when the human players face the machine. After an a priori analysis using the Theory of Didactic Situations (TDS), we conducted a pre-experiment in order to strengthen our hypotheses. In this article, we will focus on the analysis of the didactic variables, the values we have chosen for these variables and their effects on students’ strategies.
Subject Classification: 97D99, 97K99, 97P80
-
Integrating Didactic Games in Higher Education: Benefits and Challenges
1-15Views:452In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.
Subject Classification: 97C70, 97D20, 97D40, 97U70
-
Mathematician Judita Cofman (1936–2001)
91-115Views:21Judita Cofman was the first generation student of mathematics and physics at Faculty of Philosophy in Novi Sad, Serbia, and the first holder of doctoral degree in mathematical sciences at University of Novi Sad. Her Ph.D. thesis as well as her scientific works till the end of 70's belong to the field of finite projective and affine planes and the papers within this topic were published in prestigious international mathematical journals. She dedicated the second part of her life and scientific work to didactic and teaching of mathematics and to work with young mathematicians. -
Categorising question question relationships in the Pósa method
91-100Views:66The doctoral research of the author – with a reverse didactic engineering (RDE) methodology – aims at reconstructing the theoretical background of the ‘intuitively developed’ Pósa method for inquiry-based learning mathematics (IBME) in Hungarian talent education. Preliminary results of the second step of this theorization is presented, which applies tools of the Anthropological Theory of the Didactic (ATD). A model is proposed for categorizing question-question relationship with 3 categories: helping question, follow-up question and question of a kernel. The first two of them are claimed to represent two types (relevant or not) of generating-derived questions relationship. The model is also a prospective tool for connected task- and curriculum design and analysis within IBME development.
Subject Classification: 97D20, 97D40, 97D50, 97E50, 97K30
-
Illustrated analysis of Rule of Four using Maple
383-404Views:37Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four. -
Teaching polygons in the secondary school: a four country comparative study
29-65Views:38This study presents the analysis of four sequences of videotaped lessons on polygons in lower secondary schools (grades 7 and 8) taught by four different teachers in four different countries (Belgium, Flanders, England, Hungary and Spain). Our study is a part of the METE project (Mathematics Educational Traditions in Europe). The aims and methodology of the project are described briefly in the introduction. In the next section of this paper we describe various perspectives on teaching and learning polygons which were derived from the literature, concerning the objectives, conceptual aspects and didactic tools of the topic. The next two sections introduce the main outcomes of our study, a quantitative analysis of the collected data and a qualitative description linked to the perspectives on teaching polygons. We conclude by discussing some principal ideas related to the theoretical and educational significance of this research work. -
Conventions of mathematical problems and their solutions in Hungarian secondary school leaving exams
137-146Views:8Collecting and analyzing the conventions indispensable for interpreting mathematical problems and their solutions correctly assist successful education and objective evaluation. Many professional and didactic questions arose while collecting and analyzing these conventions, which needed clarification, therefore the materials involved concisely in the conventions enrich both the theory and practice of mathematics teaching. In our research we concentrated mainly on the problems and solutions of the Hungarian school leaving examinations at secondary level in mathematics. -
Decomposition of triangles into isosceles triangles I: let the students ask bravely
163-184Views:27We report about working up an open geometric problem as a mathematical research with pupils of a mathematics camp. This paper shows the didactic aims and the methods we worked with, the didactic results. The second part of this paper gives a general solution of the problem, using pure mathematics and a computer programme. -
Supporting the theory of math didactic using knowledge-measuring questions and analysis of the solutions
1-16Views:28New or rediscovered results presented in this paper are the results of the analysis of the problem sets used in the two-tier system secondary school final examination in mathematics, a system that was introduced in Hungary in 2005.
Many of the revealed problem arise in connection with misunderstanding the text of the problems. Causes of misinterpretation can be either that the text is lacking some important information, or that it should be interpreted not in word-to-word manner.
Theses and their argumentations presented here refer partly on the new types of problems (tests, non-standard mathematical contents), and partly on improvement of learning-teaching process in topics of equations and approximations. -
Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
307-316Views:99Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.
Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50
-
Über einen allgemeinen Übungsbegriff bei verschiedenen Unterrichtsmethoden in der Planung des Mathematikunterrichtes
175-201Views:38Practice is important in the education of mathematics but is neclected in the didactic of mathematics. One of the reasons is that practice is often defined too "narrowly" and the definitions of practice have in most cases an obscure background theory. In the article a general definition of practice is given, which – in contrast to the usual definitions – views practice from the point of the pupils (practice means activity of pupils). By utilising this definition consequences will be drawn. These consequences serve as for the more exact planning of practice in education as for the analysis of the dependency of practice from teachingsmethods.
In the second part an example will be presented for planning together practice and lesson, in two different teachingsmethods (traditionel, problemsolving). The analysis of both worksheets (one for each method, identical teachingsmaterial) was made on the basis of authors practise in lessons i.e. her own concepts and the experience with pupils at a class 5. On the basis of the expectable solutions is specified – using a criteriacatalog – what was practised.
The analysis of practice leads further to the examination of above mentioned dependency from teachingsmethods. -
Why some children fail? Analyzing a test and the possible signs of learning disorders in an answer sheet: dedicated to the memory of Julianna Szendrei
251-268Views:17Teachers and educators in mathematics try to uncover the background of the mistakes their students make for their own and their students' benefit. Doing this they can improve their teaching qualities, and help the cognitive development of their pupils. However, this improvement does not always support their students with learning disorders, since their problem is not caused by wrong attitude or lack of diligence. Therefore, it is the interest of a conscientious teacher to recognize whether the weaker performance of a student is caused by learning disorders, so the helping teacher can give useful advices. Although the teacher is not entirely responsible for the diagnosis, but (s)he should be be familiar with the possible symptoms in order to make suggestions whether or not to take the necessary test of the learning disorders.
In this article, through examining a test and the answer sheet of a single student, I show some signs that might be caused by learning disorders. -
Teaching Gröbner bases
57-76Views:23In this article we offer a demonstration of how the StudentGroebner package, a didactic oriented Maple package for Gröbner basis theory, could assist the teaching/learning process. Our approach is practical. Instead of expounding on deep didactic theory we simply give examples on how we imagine experimental learning in classroom. The educational goal is to prepare the introduction of two sophisticated algorithms, the division algorithm and Buchberger's algorithm, by gathering preliminary knowledge about them. -
A didactic analysis of merge sort
195-210Views:23Due to technical difficulties, educators teaching merge sort often avoid the analysis of the cost in the general and average cases. Using basic discrete mathematics, elementary real analysis and mathematical induction, we propose a self-contained derivation of bounds αn log_2 n + βn + γ in all cases. Independent of any programming language or pseudo-code, supported by intuitive figures, it is suitable for informatics students interested in the analysis of algorithms. It is also a good exercise in showing that induction allows us to actually discover constants, instead of simply checking them a posteriori. -
Les mathématiques dans le grand public et dans l'enseignement: quelques éléments d'une analyse didactique
195-216Views:34The paper looks for reaction of the public at large that is people out of educational system, concerning the mathematical exercises. We can see some results about:
• impact of terms on the motivation
• the effects of the traditional didactic on the method to resolve a problem.
Résumé. Cet article cherche la réactions du grand public c.a.d. de personnes hors systéme scolaire, de nombreuses années aprés avoir terminé leurs études vis á vis des exercises mathématiques.
Nous présentons quelques résultats concernant les points suivants:
– l'impact de l'« habillage » d'un énoncé sur la motivation
– les effets de l'absence d'un contrat didactique traditionnel sur la maniére de résoudre un probléme. -
Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations
261-274Views:39The coin tossing experiment is studied, focusing on higher education. The length of the longest head run can be studied by asymptotic theorems ([3]), by recursive formulae ([10]) or by computer simulations . In this work we make a comparative analysis of recursive formulas, asymptotic results and Monte Carlo simulation for education. We compare the distribution of the longest head run and that of the longest run (i.e. the longest pure heads or pure tails) studying fair coin events. We present a method that helps to understand the concepts and techniques mentioned in the title, which can be a useful didactic tool for colleagues teaching in higher education. -
Die Methode von Prof. Tibor Szele im Unterricht begabter Schüler
143-151Views:27Prof. Tibor Szele' has attempted to develop the mathematical problemsolving, creativity include the use of investigations and host of other devices beyond the classroom, i.e. in "mathematical circles" for talented students in secondary schools. This paper of the author – who himself has taken part in Seles1s mathematical circles – quotes from these activities according his earlier notes. This description illustrates the didactic method of Prof. T. Szele. -
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:34In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA.