Search
Search Results
-
Report on the Conference of History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics: Research in History of Mathematics & Teaching of Mathematics : University of Miskolc, 18–21 May, 2006, Miskolc, Hungary
437-449Views:35The 4th Conference on History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics was organized at the University of Miskolc (Hungary). The aim of the conference was to present aspects of the History of Mathematics and Ethno-mathematics, including its impact on the Teaching of Mathematics.
Its motto was: Mathematics – a common language for Europe for thousand years.
There were 21 presentations, a poster lecture (J. Kolumbán, University of Cluj, Romania) and an exhibition made by students of Eötvös University, Budapest (R. Tanács, K. Varga).
After a short historical introduction we present 19 abstracts and the poster lecture. -
Report on the Conference of History of Mathematics and Teaching of Mathematics: research in History of Mathematics and Teaching of Mathematics : University of Szeged 19-23 May, 2010, Szeged, Hungary
319-338Views:36The 6th Conference on the History of Mathematics and Teaching of Mathematics was held in Szeged (Hungary). Its motto reads as:
Mathematics – a common language for Europe for thousand years.
The aim of the conference was to present aspects of History of Mathematics, including its impact on Teaching of Mathematics, to provide a forum to meet each other, and to give an opportunity for young researchers to present their results in these fields. University colleagues, students, graduate students and other researchers were invited. The programme of the Conference included talks and posters. The abstracts of the lectures and the posters are presented in this report. There were 24 presentations and poster lectures. -
Using the computer to visualise graph-oriented problems
15-32Views:32The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant. -
CAS as a didactical challenge
379-393Views:33The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts. -
Numerical mathematics with GeoGebra in high school
363-378Views:41We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 30 - February 1, 2009, Debrecen, Hungary
165-186Views:17The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 30 to February 1, 2009. The 49 Hungarian participants – including 15 PhD students – came from 18 cities and represented 29 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 21 – January 23, 2010, Debrecen, Hungary
177-195Views:11The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 21 to January 23, 2010. The 42 Hungarian participants – including 16 PhD students – came from 5 countries, 14 cities and represented 25 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report. -
Learning and teaching combinatorics with Sage
389-398Views:45Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
Teaching of financial mathematics using Maple
289-301Views:54The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 28 – January 30, 2011, Satu Mare, Romania
159-179Views:13The meeting Researches in Didactics of Mathematics and Computer Science was held in Satu-Mare, Romania from the 28th to the 30th of January, 2011. The 46 Hungarian participants – including 34 lecturers and 12 PhD students – came from 3 countries, 14 cities and represented 20 institutions of higher education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 20 - January 22, 2012, Levoča, Slovakia
205-230Views:27The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Levoca, Slovakia from the 20th to the 22th of January, 2012. The 66 participants – including 54 lecturers and 25 PhD students – came from 6 countries, 20 cities and represented 33 institutions of higher and secondary education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
Assimilation of mathematical knowledge using Maple
321-331Views:44For more than four years we have been teaching a Maple course at University of Debrecen for prospective mathematics teachers. The aim of the course is that students get some experience on mathematical visualization with Maple. At the last part of the course the student is provided with a problem of geometrical flavor. Within three or four weeks he/she must obtain a solution. In this paper we present and analyze two of student projects: rotation of the hypercube and drawing of complex functions. The concluding remark is that most of the students will profit from using Maple for such type of problems: it helps to assimilate mathematical knowledge. -
GeoGebra in mathematics teaching
101-110Views:45GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools. -
Dynamic methods in teaching geometry at different levels
1-13Views:37In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]). -
Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
109-128Views:12The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education. -
Teaching XML
317-335Views:32The author has been teaching XML at the Faculty of Informatics, University of Debrecen since the end of the nineties. This paper gives an overview of XML technology from an educators viewpoint that is based on the experience that the author has gained teaching XML over the years. A detailed description of the XML course is provided. Methodological issues are also discussed. -
Problem-solving in mathematics with the help of computers
405-422Views:33One of the most important tasks of the didactics of mathematics is the describing of the process of problem-solving activity and problem-solving thinking. The psychological theories concerning the problem-solving thinking leave the special demand of school subjects out of consideration, and search for connections of universal validity. In this article we attempt to connect an abstract theory of psychology concerning problem-solving thinking and a more practical conception of the problem-solving activity of mathematics, which is based on Polya's idea. In this way we can get a structure of problem-solving, which has scientific bases and at the same time it is useful in computer aided learning. Our result was developed and tested in Hungary so this is suitable especially for the Hungarian conditions of mathematics teaching. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:34In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA. -
What does ICT help and does not help?
33-49Views:114Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
Bruner's too.
At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.Subject Classification: 97U70
-
Report of Conference XL. National Conference on Teaching Mathematics, Physics and Computer Science August 22-24, 2016 Székesfehérvár, Hungary
259-276Views:12The XL. National Conference on Teaching Mathematics, Physics and Computer Sciences (MAFIOK) was held in Székesfehérvár, Hungary between 22 and 24 August, 2016 at the Alba Regia Technical Faculty of Óbuda University. For the three-day event, more than 80 persons were registered and more than 40 lectures were given. The fortieth anniversary scientific conference was designed for researchers and teachers in mathematics, physics and informatics to promote modern and efficient education in higher education, and through poster presentations and personal meetings to exchange experience. The opening ceremony of the conference followed by the three plenary lectures took place at the ceremonial hall of the Town Hall. ... -
Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
307-316Views:99Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.
Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50
-
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:27In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Blind versus wise use of CAS
407-417Views:7During my courses for mathematics major students I often use technology linked to the arising problems. In such cases I noted that some students were used to learn just some procedures, which made them able to solve (partially) some problems and when they got the result, they accepted it passively and did not relate it to the initial problem.
In this paper I outline a strategy and investigate some simple exercises about how to develop a critical attitude towards the results obtained by technology in an introductory course to CAS.
I believe that wise use of technology offers an effective method in teaching mathematics, without reducing the students' mental contribution. -
Nice tiling, nice geometry!?!
269-280Views:38The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.