Search

Published After
Published Before

Search Results

  • Report on the Conference of History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics: Research in History of Mathematics & Teaching of Mathematics : University of Miskolc, 18–21 May, 2006, Miskolc, Hungary
    437-449
    Views:
    35
    The 4th Conference on History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics was organized at the University of Miskolc (Hungary). The aim of the conference was to present aspects of the History of Mathematics and Ethno-mathematics, including its impact on the Teaching of Mathematics.
    Its motto was: Mathematics – a common language for Europe for thousand years.
    There were 21 presentations, a poster lecture (J. Kolumbán, University of Cluj, Romania) and an exhibition made by students of Eötvös University, Budapest (R. Tanács, K. Varga).
    After a short historical introduction we present 19 abstracts and the poster lecture.
  • Report on the Conference of History of Mathematics and Teaching of Mathematics: research in History of Mathematics and Teaching of Mathematics : University of Szeged 19-23 May, 2010, Szeged, Hungary
    319-338
    Views:
    37
    The 6th Conference on the History of Mathematics and Teaching of Mathematics was held in Szeged (Hungary). Its motto reads as:
    Mathematics – a common language for Europe for thousand years.
    The aim of the conference was to present aspects of History of Mathematics, including its impact on Teaching of Mathematics, to provide a forum to meet each other, and to give an opportunity for young researchers to present their results in these fields. University colleagues, students, graduate students and other researchers were invited. The programme of the Conference included talks and posters. The abstracts of the lectures and the posters are presented in this report. There were 24 presentations and poster lectures.
  • Capturing how students' abilities and teaching experiences affect teachers' beliefs about mathematics teaching and learning
    195-212
    Views:
    125

    We developed an instrument to investigate the effect of students' abilities and teaching experiences on teachers' beliefs about teaching and learning of mathematics. In this pilot study, we used the instrument to measure the beliefs of 43 Indonesian math teachers and five additional teachers. Then, for further investigation, we interviewed those five additional teachers. Results from the 43 teachers' responses to the instrument show that in contrast to teachers with less than five years of teaching, teachers with more than five years elicit significantly different beliefs about mathematics teaching and learning in different contexts related to students' abilities. Teachers' reports in the further investigation indicate that teaching experiences with high and low ability students in teaching mathematics could be a possible explanation of this contrast.

    Subject Classification: C20

  • Psychology - an inherent part of mathematics education
    1-18
    Views:
    147

    On the chronology of individual stations of psychology and their effect on mathematics education designed as working document for use in teacher training.
    The article is structured as a literature survey which covers the numerous movements of psychology towards mathematics education. The current role of psychology in mathematics education documented by different statements and models of mathematics education should provide a basis for the subsequent investigations. A longitudinal analysis pausing at essential marks takes centre of the continuative considerations. The observed space of time in the chapter covers a wide range. It starts with the separation of psychology from philosophy as a self-contained discipline in the middle of the 19th and ends with the beginning of the 21st century. Each stop states the names of the originators and the branches of psychology they founded. These stops are accompanied by short descriptions of each single research objective on the one hand, and their contributions to mathematics education on the other hand. For this purpose, context-relevant publications in mathematics education are integrated and analysed. The evaluation of the influence of concepts of psychology on teaching technology in mathematics is addressed repeatedly and of great importance. The layout of this paper is designed for the use as a template for a unit in teacher-training courses. The conclusion of the article where the author refers to experiences when teaching elements of psychology in mathematics education courses at several universities in Austria is intended for a proof on behalf of the requested use.

    Subject Classification: 01A70, 01-XX, 97-03, 97D80

  • Lehre der Trigonometrie anhand realistischer Aufgaben im Online-Unterricht
    87-105
    Views:
    108

    The aim of our study was to explore the effects of the active use of realistic exercises in the field of trigonometry. We taught a group of 14 pupils, who were in grade 11. The most of them told us they did not plan mathematics-related studies in the future. We included realistic exercises into our teaching plan, which covered the fields of scalar product, as well as the sine and cosine theorems. Our teaching experiment was done within the framework of online teaching. Effects on the motivation, performance and results of the students were taken into consideration. We also attempted to examine the effects of online teaching on motivation and whether the use of realistic exercises is worthwhile in an online classroom environment. Performance of the students showed a tendency of improvement when they were dealing with the material through realistic exercises even despite the teaching happened online.

    Subject Classification: 97C70, 97D40, 97G60

  • Methodological questions of digital teaching material development made in the subject of mathematics
    25-41
    Views:
    40
    In the methodology of mathematics teaching, the selection and the manner of using applicable digital teaching materials appeared as a new element. As the number of digital teaching materials applicable in education is constantly increasing, their purposeful use is rarely discussed. In what areas digital teaching materials can be used in mathematics? What are the problems for which they could provide a solution? Shall we use them besides traditional solutions, or instead?
    The authors of this article have had the opportunity to participate in projects aiming to develop digital learning materials on various occasions. During the implementation of the projects, they needed to make methodological compromises at various points.
    In our article, we are seeking a more emphatic use of methodology belonging to digital teaching materials, drawing on the experiences of three implemented projects. Our aim is to draw the attention to the anomalies we found in the implementation of the projects, which must be taken into consideration in new developments already at the planning stage.
  • The application of modelling tasks in the classroom – why and how? with reflections on an EU teacher training course
    231-244
    Views:
    34
    The aim of the article is to present the concept of mathematical modelling in the classroom. LEMA (Learning and Education in and through Modelling and Applications) was an EU Comenius funded project in which mathematics educators from six countries worked to produce materials to support teachers' professional development. A group of voluntary Hungarian mathematics teachers were taught modelling for a year and we were and still are given feedback continously. The article leads us from the general concept of mathematical modelling to its practice in the classroom. It presents difficulties that teachers have to face when doing modelling lessons and their students' reactions are also mentioned. We present sample tasks from the material of the teacher training course as well as tasks that were created by the participants.
  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    32
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.
  • Willy Servais and Tamás Varga A Belgian Hungarian perspective on teaching school mathematics
    29-38
    Views:
    74

    Willy Servais and Tamás Varga had a major influence on the development of mathematics education during the 1960s and 1970s, both in their home countries and internationally. In 1971 they jointly published Teaching School Mathematics–A Unesco Source Book, a review of curriculum reforms that were under way in different parts of the world. The book, presenting several modern syllabuses as well as examples of classroom techniques and segments of teacher-student dialogues, provided an often consulted guide to the field of mathematics education. We re-read this book and in this way acquire a unique insight into the modernization efforts of school mathematics during the 1960s and early 1970s. We take this opportunity to discuss the sometimes partly divergent views of Servais and Varga on modern mathematics education as reflected in this book.

    Subject Classification: 97-03

  • Ist eine schnelle tiefgehende (und nachhaltige) Änderung in der Vorstellung von Mathematiklehrern möglich? - Reflexion der Erfahrungen eines Fortbildungskurses im Bereich der mathematischen Modellierung
    1-20
    Views:
    16
    Based on the material which was worked out within the project LEMA (2006-2009) pilot-teacher training courses were organized in the six partner countries, so in Hungary as well in the subject: Practice of Modelling tasks in the classroom. According to the tests which were filled out by the participants the conclusion was formulated that they achieved some changes in their pedagogical knowledge and in their estimation concerning their self-efficacy, but they didn't have shown any changes in their beliefs of mathematics and mathematics education. However according to their experience as project partners and leaders of the Hungarian course the authors have the idea that despite of the international results there are changes in this subject in the case of the Hungarian participants. This way can formulated the question:
    Which changes can be observed in the case of the participants concerning belief towards mathematics and mathematics education after the course and how long-lasting these changes are?
    The question is examined on the example of two teachers who were participants of the course.
  • Tamás Varga’s reform movement and the Hungarian Guided Discovery approach
    11-28
    Views:
    155

    This paper presents Tamás Varga’s work focusing especially on the Hungarian Complex Mathematics Education reform project led by him between 1963 and 1978 and the underlying conception on mathematics education named “Guided Discovery approach”. In the first part, I describe Varga’s career. In the second part, I situate his reform project in its international and national historical context, including the international “New Math” movement and the “Guided Discovery” teaching tradition, something which is embedded in Hungarian mathematical culture. In the third part, I propose a didactic analysis of Varga’s conception on mathematics education, underlining especially certain of its characteristics which can be related to Inquiry Based Mathematics Education. Finally I briefly discuss Varga’s legacy today.

    Subject Classification: 97-03, 97B20, 97D20, 97D40, 97D50

  • Report of the conference "Connecting Tamás Varga’s Legacy and Current Research in Mathematics Education": November 6-8, 2019, Budapest, Hungary
    5-8
    Views:
    92

    On the occasion of the 100th anniversary of the birth of the Hungarian mathematics educator, didactician and reform leader Tamás Varga, a conference on mathematics education has been organized in November 2019 and held at the Hungarian Academy of Science.

  • CAS as a didactical challenge
    379-393
    Views:
    33
    The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts.
  • Numerical mathematics with GeoGebra in high school
    363-378
    Views:
    41
    We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented.
  • Analysis of the affective factors of learning mathematics among teacher trainees
    225-254
    Views:
    39
    The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
    The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
    In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training.
  • Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
    251-291
    Views:
    7
    The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
    Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden.
  • Comparative survey on pupils' beliefs of mathematics teaching in Finland and Ukraine
    13-33
    Views:
    15
    The focus of this comparative survey was the following research question: What are the differences and similarities in pupils' beliefs in mathematics between Finland and Ukraine? Data were gathered with the help of a questionnaire. The questionnaire consists of 32 structured statements about mathematics teaching for which the pupils were asked to rate their beliefs on a 5-step scale. The Finnish sample comprised 255 pupils, and the Ukrainian sample 200 pupils. Our data has been gathered with a non-probabilistic convenience sampling.
    The main results of our survey are, as follows: Generally, pupils' beliefs of mathematics teaching and learning in Finland and Ukraine are rather far from similar. An investigation of the differences between pupils' answers across the two countries also showed beliefs that are characteristic for each country. For pupils in Finland, the characteristic beliefs seem to be, as follows: the value of strict discipline, working in small groups, and the idea that all understand. For pupils in Ukraine, the most characteristic might be the following beliefs: the use of learning games, the emphases of mathematical concepts, and teachers' explanations.
  • The Project Method and investigation in school mathematics
    241-255
    Views:
    40
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.
  • Mathematics teachers' reasons to use (or not) intentional errors
    263-282
    Views:
    34
    Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 21 – January 23, 2010, Debrecen, Hungary
    177-195
    Views:
    12
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 21 to January 23, 2010. The 42 Hungarian participants – including 16 PhD students – came from 5 countries, 14 cities and represented 25 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 30 - February 1, 2009, Debrecen, Hungary
    165-186
    Views:
    18
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 30 to February 1, 2009. The 49 Hungarian participants – including 15 PhD students – came from 18 cities and represented 29 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report.
  • Teaching of financial mathematics using Maple
    289-301
    Views:
    55
    The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc.
  • The tradition of problem-posing in Hungarian mathematics teaching
    233-254
    Views:
    182

    Based on the literature, Pólya was influential in problem-posing research. The present paper draws attention to a book written with Pólya's collaboration, which has not yet received sufficient emphasis in the problem-posing literature. On the other hand, Pólya's impact on mathematics education in Hungary has been significant, including the problem-posing paradigm. Two works, published only in Hungarian, that rely heavily on problem-posing are highlighted. Furthermore, it is presented how problem-posing appeared in the Hungarian Complex Mathematics Teaching Experiment (1962-78) led by Tamás Varga.

    Subject Classification: 97D50

  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    45
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Teaching polygons in the secondary school: a four country comparative study
    29-65
    Views:
    40
    This study presents the analysis of four sequences of videotaped lessons on polygons in lower secondary schools (grades 7 and 8) taught by four different teachers in four different countries (Belgium, Flanders, England, Hungary and Spain). Our study is a part of the METE project (Mathematics Educational Traditions in Europe). The aims and methodology of the project are described briefly in the introduction. In the next section of this paper we describe various perspectives on teaching and learning polygons which were derived from the literature, concerning the objectives, conceptual aspects and didactic tools of the topic. The next two sections introduce the main outcomes of our study, a quantitative analysis of the collected data and a qualitative description linked to the perspectives on teaching polygons. We conclude by discussing some principal ideas related to the theoretical and educational significance of this research work.