Search
Search Results
-
The formation of area concept with the help of manipulative activities
121-139Views:33Examining the performance of Hungarian students of Grades 4-12 in connection with area measurement, we found many deficiencies and thinking failures. In the light of this background, it seems reasonable to review the educational practice and to identify those teaching movements that trigger the explored problems and to design a teaching experiment that tries to avoid and exclude them. Based on result we make recommendations for the broad teaching practice. In our study we report on one part of a multi-stage teaching experiment in which we dealt with the comparison of the areas of figures, the decomposition of figures and the special role of the rectangle in the process of area concept formation. The conclusion of the post-test is that manipulative activities are important and necessary in Grades 5 and 6, more types of equidecomposition activities are needed and the number of measuring tasks with grid as a tool should also be increased. -
The Project Method and investigation in school mathematics
241-255Views:39The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics. -
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:27In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Mechanisms for teaching introductory programming using active learning
407-421Views:27One of the requirements of teaching introductory programming to students whose branch of learning is engineering or science is bridging the gap between in-class lectures and real-world applications. Traditional passive approaches to lecturing often focus on the syntax of a language with little or no discussion of the process involved in using the language to design algorithms to solve real-world problems. One way of overcoming the limitations of traditional lecturing is by tailoring lectures towards becoming more student-oriented, a pedagogical methodology known as active learning. This paper explores mechanisms for implementing active learning in introductory programming courses in computer science. -
"Upperview" algorithm design in teaching computer science in high schools
221-240Views:39In this paper we are going to present a teaching/learning method and suggest a syllabus that help the high school students look at the algorithm design strategies from a so called "upperview": greedy, backtracking, divide and conquer, dynamic programming. The goal of the suggested syllabus is, beyond the presentation of the techniques, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In consensus with the Comenius principle this is essential, if we want to master this field of programming ("To teach means scarcely anything more than to show how things differ from one another in their different purposes, forms, and origins. ... Therefore, he who differentiates well teaches well."). -
A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
133-161Views:123We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.
Subject Classification: 97B40, 97C70
-
Teaching reliability theory with the Computer Algebra System Maxima
45-75Views:31The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education. -
CAS as a didactical challenge
379-393Views:33The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts. -
Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
31-49Views:151In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.
Subject Classification: 97U20, 08A50
-
Teaching probability using graph representations
103-122Views:32The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach. -
Numerical mathematics with GeoGebra in high school
363-378Views:41We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented. -
Some aspects of teaching the technology of designing and planning information systems in health care
131-144Views:25In this article, we use the well-known ideas of technology in designing of new information systems in health care. We explain the principle that "making a health care application" "is more than writing a program", "it requires a strong co-operation and continuous contact" between the system analysts and users. The concept of the information system must contain the work of the whole system, which means that the planning and designing process should focus on the services, which really support the customer's functions. It has to be compatible with the earlier information systems based on several decade's experience. In this paper we use the most important elements of system theory. First of all we explain why it is important to take into account the behaviour of those, who operate the information system, and also their habits and way of thinking when planning then information system. We emphasise that it is importance to overview the whole information system and its functionality because it is a major aspect of the system planning.
This paper can be used in university courses especially in teaching SDM, SSADM, Martin, etc. technologies for information system analysts, program designers and programmers. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 20 - January 22, 2012, Levoča, Slovakia
205-230Views:27The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Levoca, Slovakia from the 20th to the 22th of January, 2012. The 66 participants – including 54 lecturers and 25 PhD students – came from 6 countries, 20 cities and represented 33 institutions of higher and secondary education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
Teaching probability theory by using a web based assessment system together with computer algebra
81-95Views:34In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA. -
Forming the concept of congruence I.
181-192Views:9Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence. -
Wichtige Momente aus der ungarischen Geschichte des Analysisunterrichts
57-76Views:76Törner et al. (2014) paper gives an outstanding review about teaching analysis at high school level in (Western) Europe. We tried to extend this paper with some results from the Hungarian Math History (Beke and Rátz 1897-1924, after second World War 1949-1960, the current situation-first of all based on schoolbooks, and we also included an experiment from 1984-1989 by E. Deák, which was interrupted and partially forgotten). In summary, this paper deals with the turning points of the brief history of teaching secondary school analysis in the XXth century in Hungary, including some conclusions at the end.
Subject Classification: 97A30, 97C30, 97D30, 97E50, 97I20, 97I40, 97U20
-
From iteration to one - dimensional discrete dynamical systems using CAS
271-296Views:20In our paper we present the basic didactical framework and approaches of a course on one-dimensional discrete dynamical systems made with the help of Computer Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First we review some didactical principles of teaching mathematics in general and write about the advantages of the modularization for CAS in referring to the constructivistic view of learning. Then we deal with our own development, a CAS-based collection of programs for teaching Newton's method for the calculation of roots of a real function. Included is the discussion of domains of attraction and chaotic behaviour of the iterations. We summarize our teaching experiences using CAS. -
Group Work at High School According to the Method of Tamás Varga
167-176Views:78The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.
Subject Classification: 97D40
-
Teaching of financial mathematics using Maple
289-301Views:52The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc. -
Dynamic methods in teaching geometry at different levels
1-13Views:37In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]). -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 28 – January 30, 2011, Satu Mare, Romania
159-179Views:12The meeting Researches in Didactics of Mathematics and Computer Science was held in Satu-Mare, Romania from the 28th to the 30th of January, 2011. The 46 Hungarian participants – including 34 lecturers and 12 PhD students – came from 3 countries, 14 cities and represented 20 institutions of higher education. The abstract of the talks and the posters and also the list of participants are presented in this report. -
Teaching correlation and regression in three European countries
161-183Views:73In this article, we compare the presence of correlation and regression analysis in secondary education of Ireland, the Netherlands and Luxembourg, through the analysis of final-exam tasks and curricula based on the Anthropological Theory of Didactics (ATD). It points out that the same topic can appear in different ways and extent in curricula, even if the mathematics teaching goals are similar. This article is a kind of introduction to the research that explores the possibilities for the appearance of these concepts in the Hungarian mathematics education. Therefore, in the second part of the article, Hungarian curricular goals are included, and it is shown which methodology of the three studied countries has the greatest curricular basis in Hungary.
Subject Classification: 97xxx
-
Teaching performance testing
17-33Views:92Performance testing plays a vital role in the verification of large scale software systems. It is used for testing the speed, responsiveness, capacity and stability of the investigated system. However, despite the significance of this topic, the effort invested in teaching performance testing in Computer Science is insufficient. The current paper shows, how the fundamentals of performance testing can be demonstrated to students both from a theoretical and a practical viewpoint through step-by-step practical examples that are used in the industry. It is also discussed how a basic toolchain can be set up for performance tests using only free tools. With the presented examples, the reader will be able to take first steps in the performance testing area.
Subject Classification: 68M15
-
Forming the concept of congruence II.
1-12Views:31This paper is a continuation of the article Forming the concept of congruence I., where I gave theoretical background to the topic, description of the traditional method of representing the isometries of the plane with its effect on the evolution of congruence concept.
In this paper I describe a new method of representing the isometries of the plane. This method is closer to the abstract idea of 3-dimensional motion. The planar isometries are considered as restrictions of 3-dimensional motions and these are represented with free translocations given by flags.
About the terminology: I use some important concepts connected to teaching of congruence, which have to be distinguished. My goal is to analyse different teaching methods of the 2-dimensional congruencies. I use the term 3-dimensional motion for the orientation preserving (direct) 3-dimensional isometry (which is also called rigid motion or rigid body move). When referring the concrete manipulative representation of the planar congruencies I will use the term translocation. -
Methods of teaching programming
247-257Views:47Programming methodology is one of the oldest fields of IS education, and thus various methods have evolved for its teaching. While some of them could be used effectively in primary or secondary education, others are more suited for students in higher education. The methods themselves determine the structure and curricula of courses such as Programming methodology, Data types and algorithms, Programming technology.