Articles
Forming the concept of congruence II.
Published:
2012-06-01
Author
View
Keywords
teacher education concept formation acquisition of mathematical concepts transformation geometry manipulative materials teaching methods and classroom techniques
License
Copyright (c) 2012 Éva Szeredi
This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Selected Style:
APA
Szeredi, Éva. (2012). Forming the concept of congruence II. Teaching Mathematics and Computer Science, 10(1), 1-12. https://doi.org/10.5485/TMCS.2012.0248
Abstract
This paper is a continuation of the article Forming the concept of congruence I., where I gave theoretical background to the topic, description of the traditional method of representing the isometries of the plane with its effect on the evolution of congruence concept.
In this paper I describe a new method of representing the isometries of the plane. This method is closer to the abstract idea of 3-dimensional motion. The planar isometries are considered as restrictions of 3-dimensional motions and these are represented with free translocations given by flags.
About the terminology: I use some important concepts connected to teaching of congruence, which have to be distinguished. My goal is to analyse different teaching methods of the 2-dimensional congruencies. I use the term 3-dimensional motion for the orientation preserving (direct) 3-dimensional isometry (which is also called rigid motion or rigid body move). When referring the concrete manipulative representation of the planar congruencies I will use the term translocation.
In this paper I describe a new method of representing the isometries of the plane. This method is closer to the abstract idea of 3-dimensional motion. The planar isometries are considered as restrictions of 3-dimensional motions and these are represented with free translocations given by flags.
About the terminology: I use some important concepts connected to teaching of congruence, which have to be distinguished. My goal is to analyse different teaching methods of the 2-dimensional congruencies. I use the term 3-dimensional motion for the orientation preserving (direct) 3-dimensional isometry (which is also called rigid motion or rigid body move). When referring the concrete manipulative representation of the planar congruencies I will use the term translocation.