Search
Search Results
-
Rational errors in learning fractions among 5th grade students
347-358Views:72Our paper focuses on empirical research in which we map out the errors in learning fractions. Errors are often logically consistent and rule-based rather than being random. When people face solving an unfamiliar problem, they usually construct rules or strategies in order to solve it (Van Lehn, 1983). These strategies tend to be systematic, often make ‘sense’ to the people who created them but often lead to incorrect solutions (Ben-Zeev, 1996). These mistakes were named rational errors by Ben-Zeev (1996). The research aims to show that when learning fractions, students produce such errors, identified in the literature, and that students who make these kinds of mistakes achieve low results in mathematics tests. The research was done among 5th-grade students.
Subject Classification: 97C10, 97C30, 97C70, 97D60, 97D70, 97F50
-
CS unplugged in higher education
1-23Views:39Nowadays, there is a significant lack of workforce in the IT industry, even though it is one of the most lucrative professions. According to researchers' forecasts, the existing shortage is growing, so the wages offered will be higher, yet it seems that young people are not attracted to the profession. This problem draws attention to the need to change the curriculum so that it can attract students more. One possible solution is to supplement the curriculum with CS Unplugged activities, which makes it easier to understand and deepen difficult concepts and make IT lessons more colorful. In my article, besides presenting the already known CS Unplugged activities, I will deal with how this can be applied in Hungarian higher education as well. -
Cultivating algorithmic thinking: an important issue for both technical and HUMAN sciences
107-116Views:28Algorithmic thinking is a valuable skill that all people should master. In this paper we propose a one-semester, algorithm-oriented computer science course for human science students. According to our experience such an initiative could succeed only if the next recipe is followed: interesting and practical content + exciting didactical methods + minimal programming. More explicitly, we suggest: (1) A special, simple, minimal, pseudo-code like imperative programming language that integrates a graphic library. (2) Interesting, practical and problem-oriented content with philosophical implications. (3) Exciting, human science related didactical methods including art-based, inter-cultural elements. -
Live & Learn: When a wrong program works
195-208Views:26In this paper an interesting and surprising case study of my programming education practice is presented. This case underlines the importance of methods, standards and rules of thumb of the programming process. These elements of the programming technology can be taught well in education and they can guarantee the quality of the implemented programs. However the case described in this paper brings an anomaly when a programming standard is violated during the programming process and, although it should imply that the implemented program code works badly, the program works perfectly. This anomaly is caused by a typical implementation problem: the boundary and rules of the machine representation of numbers. This anomaly is going to be analyzed and the appropriate conclusions of our case study will be deducted. -
Blind versus wise use of CAS
407-417Views:7During my courses for mathematics major students I often use technology linked to the arising problems. In such cases I noted that some students were used to learn just some procedures, which made them able to solve (partially) some problems and when they got the result, they accepted it passively and did not relate it to the initial problem.
In this paper I outline a strategy and investigate some simple exercises about how to develop a critical attitude towards the results obtained by technology in an introductory course to CAS.
I believe that wise use of technology offers an effective method in teaching mathematics, without reducing the students' mental contribution. -
The Project Method and investigation in school mathematics
241-255Views:39The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics. -
A computational thinking problem-thread for grade 7 students and above from the Pósa method
101-110Views:97Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.
Subject Classification: 97D40
-
A geometric application to the third-order recurrence relations for sequences
287-302Views:31Using a third-order linear homogeneous recurrence relation with constant coefficients, it is found a limit-point of a sequence of affixes in plane. Starting from a classic geometric problem, an application is so created and few more nice properties are found and described. -
Die Stichprobe als ein Beispiel dafür, wie im Unterricht die klassische und die bayesianische Auffassung gleichzeitig dargestellt werden kann
133-150Views:30Teaching statistics and probability in the school is a new challenge of the Hungarian didactics. It means new tasks also for the teacher- and in service-teacher training. This paper contains an example to show how can be introduced the basic notion of the inference statistics, the point- and interval-estimation by an elementary problem of the public pole. There are two concurrent theories of the inference statistics the so called classical and the Bayesian Statistics. I would like to argue the importance of the simultaneously introduction of both methods making a comparison of the methods. The mathematical tool of our elementary model is combinatorial we use some important equations to reach our goal. The most important equation is proved by two different methods in the appendix of this paper. -
Maximum and minimum problems in secondary school education
81-98Views:31The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:32Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
Taking learning styles into consideration in e-learning based education
385-396Views:38In improving electronic teaching material processes we should take the student's learning styles or methods into consideration. The ways learners receive information may be shared into three categories (modalities): visual, auditory, kinesthetic (tactile). In this paper I present some pedagogical questions of the electronic teaching-learning environment, offer a brief survey of the different learning style theories and emphasise the importance of the modalities in encoding information. The electronic teaching material should encourage the learner to choose an appropriate form of syllabus by which his knowledge can become more efficient. -
Categorising question question relationships in the Pósa method
91-100Views:66The doctoral research of the author – with a reverse didactic engineering (RDE) methodology – aims at reconstructing the theoretical background of the ‘intuitively developed’ Pósa method for inquiry-based learning mathematics (IBME) in Hungarian talent education. Preliminary results of the second step of this theorization is presented, which applies tools of the Anthropological Theory of the Didactic (ATD). A model is proposed for categorizing question-question relationship with 3 categories: helping question, follow-up question and question of a kernel. The first two of them are claimed to represent two types (relevant or not) of generating-derived questions relationship. The model is also a prospective tool for connected task- and curriculum design and analysis within IBME development.
Subject Classification: 97D20, 97D40, 97D50, 97E50, 97K30
-
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Teaching student teachers: various components of a complex task
55-72Views:26In this paper we summarize various aspects of teacher training and teaching student teachers (mainly concerning teachers of upper secondary school and High school). We stress several hints and recommendations to better achieve the obviously important aim: they should learn doing, understanding and teaching mathematics!
Of course, our view is particularly influenced by European traditions, but we think most of them equally apply to teacher training and teaching student teachers elsewhere. Neither is the paper meant to give an all sided overview about the problem field of teacher education as a whole, nor does it contain provocative, completely new ideas. We just want to describe our view of some aspects, based primarily on our personal experience in the mentioned field. -
Many paths lead to statistical inference: Should teaching it focus on elementary approaches or reflect this multiplicity?
259-293Views:76For statistics education, a key question is how to design learning paths to statistical inference that are elementary enough that the learners can understand the concepts and that are rich enough to develop the full complexity of statistical inference later on. There are two ways to approach this problem: One is to restrict the complexity. Informal Inference considers a reduced situation and refers to resampling methods, which may be completely outsourced to computing power. The other is to find informal ways to explore situations of statistical inference, also supported with the graphing and simulating facilities of computers. The latter orientates towards the full complexity of statistical inference though it tries to reduce it for the early learning encoun-ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and allows for a full concept of probability in comparison to the Informal Inference, which reduces probability to a mere frequentist concept and – based on this – restricts inference to a few special cases. We also develop a didactic framework for our analysis, which includes the approach of Tamás Varga.
Subject Classification: 97K10, 97K70, 97K50, 97D20
-
Normalization based on dependency diagram
121-132Views:22Normalization is an important database planning method, although the understanding and application of this method brings up the utmost problem during data modelling. That is why we were looking for alternative normalization methods, from which the normalization with dependency diagram proved to be the most efficient. This was also confirmed by the statistical estimation of the carried out survey. -
Teaching model-based testing
1-17Views:1205Different testing methodologies should play an important role in the education of informatics. In the model-based testing (MBT) approach, the specification of the system is described with a formal model. This model can be used to revise the correctness of the specification and as a starting point for automatic test generation. The main problem with MBT is however, that there is a huge gap between theory and practice and that this approach has a high learning curve. To cope with these problems, current paper shows, how the MBT approach can be introduced to students through a small scale example.
Subject Classification: P50
-
A new approach for explaining Rhind's Recto – and its utility in teaching
337-355Views:38The Recto is a table in the Rhind Mathematical Papyrus (RMP) of ancient Egypt containing the unit fraction decompositions of fractions 2/n (3 ≤ n ≤ 101, n odd). To the question how (and why) the decompositions were made, there exists no generally accepted answer. The fact that in some other sources of Egyptian mathematics decompositions different from those in Recto exist makes the problem more difficult.
Researchers normally try to find the answer in some formulas by which the entries of the table were calculated [see e.g. 1, 42]. We are convinced that the correct answer is not hidden in formulas but in the characteristics of Egyptian mathematics namely those of fraction and division concepts. To study them is important not only from historical point of view but also from methodological one: how to develop fraction concept and how to make division easier. -
An interactive animation for learning sorting algorithms: How students reduced the number of comparisons in a sorting algorithm by playing a didactic game
45-62Views:36Learning programming and understanding algorithms is one of the hardest tasks for novice computer science students. One of the basic algorithms they learn during the introductory programming and algorithms courses are the sorting algorithms. Students like learning these and other algorithms by animations and didactic games, however, these animations are not educationally useful in every case. In this article, we present our educational sorting game, which can be used to introduce the topic of sorting algorithms. The didactic game can be used later too, as a demonstrative tool for explaining the more efficient, quicksort algorithm. We conducted a pedagogical experiment, in which we examined the process of development of sorting algorithms by students while they used the mentioned didactic game. The results showed that students were able to create an algorithm to solve the sorting problem, and they improved its effectiveness by reducing the number of comparisons in the algorithm. They were also able to understand the importance of the efficiency of algorithms when we demonstrated them the quicksort algorithm using the same tool after the experiment. -
Teaching of financial mathematics using Maple
289-301Views:52The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc. -
Teaching centroids in theory and in practice
67-88Views:36The main aim of this paper is to present an inquiry-based professional development activity about the teaching of centroids and to highlight some common misconceptions related to centroids. The second aim is to emphasize a major hindering factor in planning inquiry based teaching/learning activities connected with abstract mathematical notions. Our basic problem was to determine the centroid of simple systems such as: systems of collinear points, arbitrary system of points, polygons, polygonal shapes. The only inconvenience was that we needed practical activities where students could validate their findings and calculations with simple tools. At this point we faced the following situation: we have an abstract definition for the centroid of a finite system of points, while in practice we don't even have such systems. The same is valid for geometric objects like triangles, polygons. In practice we have triangular objects, polygonal shapes (domains) and not triangles, polygons. Thus in practice for validating the centroid of a system formed by 4,5,... points we also need the centroid of a polygonal shape, formed by an infinite number of points. We could use, of course, basic definitions, but our intention was to organize inquiry based learning activities, where students can understand fundamental concepts and properties before defining them. -
The background of students' performance
295-305Views:35The question to which we were seeking was: how can we reveal the students' strategies and mental process by following their work precisely and by finding out what correlation these have with their efficiency. Our aim was to understand the factors behind of students' achievement. We tried to follow up the process of problem solving by looking at the number of wrong turnings. -
Examining relation between talent and competence through an experiment among 11th grade students
17-34Views:31The areas of competencies that are formable, that are to be formed and developed by teaching mathematics are well-usable in recognizing talent. We can examine the competencies of a student, we can examine the competencies required to solve a certain exercise, or what competencies an exercise improves.
I studied two exercises of a test taken by students of the IT specialty segment of class 11.d of Jedlik Ányos High School, a class that I teach. These exercises were parts of the thematic unit of Combinatorics and Graph Theory. I analysed what competencies a gifted student has, and what competencies I need to improve while teaching mathematics. I summarized my experience about the solutions of the students, the ways I can take care of the gifted students, and what to do to the less gifted ones. -
Examples of analogies and generalizations in synthetic geometry
19-39Views:29Teaching tools and different methods of generalizations and analogies are often used at different levels of education. Starting with primary grades, the students can be guided through simple aspects of collateral development of their studies. In middle school, high school and especially in entry-level courses in higher education, the extension of logical tools are possible and indicated.
In this article, the authors present an example of generalization and then of building the analogy in 3-D space for a given synthetic geometric problem in 2-D.
The idea can be followed, extended and developed further by teachers and students as well.