Search
Search Results
-
Mathematics in Good Will Hunting II: problems from the students perspective
3-19Views:184This is the second part of a three paper long series exploring the role of mathematicians and of the mathematical content occurring in popular media. In particular we analyze the drama film Good Will Hunting. Here we investigate the mathematical content of the movie by considering the problems appearing in it. We examine how a mathematician or a mathematics student would solve these problems. Moreover, we review how these problems could be integrated into the higher education of Hungary. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 21 – January 23, 2010, Debrecen, Hungary
177-195Views:88The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 21 to January 23, 2010. The 42 Hungarian participants – including 16 PhD students – came from 5 countries, 14 cities and represented 25 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report. -
Herschel's heritage and today's technology integration: a postulated parallel
419-430Views:102During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
• Disciplinary congruence with influential contemporary trends in mathematics.
• External currency in wider mathematical practice beyond the school.
• Adoptive facility of incorporation in classroom practice and curricular activity.
• Educational advantage of perceived benefits outweighing costs and concerns.
An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed. -
Comparative survey on pupils' beliefs of mathematics teaching in Finland and Ukraine
13-33Views:69The focus of this comparative survey was the following research question: What are the differences and similarities in pupils' beliefs in mathematics between Finland and Ukraine? Data were gathered with the help of a questionnaire. The questionnaire consists of 32 structured statements about mathematics teaching for which the pupils were asked to rate their beliefs on a 5-step scale. The Finnish sample comprised 255 pupils, and the Ukrainian sample 200 pupils. Our data has been gathered with a non-probabilistic convenience sampling.
The main results of our survey are, as follows: Generally, pupils' beliefs of mathematics teaching and learning in Finland and Ukraine are rather far from similar. An investigation of the differences between pupils' answers across the two countries also showed beliefs that are characteristic for each country. For pupils in Finland, the characteristic beliefs seem to be, as follows: the value of strict discipline, working in small groups, and the idea that all understand. For pupils in Ukraine, the most characteristic might be the following beliefs: the use of learning games, the emphases of mathematical concepts, and teachers' explanations. -
Problem-solving in mathematics with the help of computers
405-422Views:79One of the most important tasks of the didactics of mathematics is the describing of the process of problem-solving activity and problem-solving thinking. The psychological theories concerning the problem-solving thinking leave the special demand of school subjects out of consideration, and search for connections of universal validity. In this article we attempt to connect an abstract theory of psychology concerning problem-solving thinking and a more practical conception of the problem-solving activity of mathematics, which is based on Polya's idea. In this way we can get a structure of problem-solving, which has scientific bases and at the same time it is useful in computer aided learning. Our result was developed and tested in Hungary so this is suitable especially for the Hungarian conditions of mathematics teaching. -
Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
251-291Views:102The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden. -
Zur Veränderung des Stellenwertesvon Beweisen im Mathematikunterricht - eine Analyse von ungarischen Abiturprüfungenzwischen 1981 und 2020
35-55Views:153Proofs are not just an essential, crucial part of mathematics as a science, they also have a long tradition in Hungarian mathematics classrooms. However, the school in general and, mathematics education in particular, have been changed in the last few decades enormously, including the final secondary school examinations in mathematics. The current paper's main goal is to answer the question, how has been changed the weight and the content of reasoning and especially proving tasks in the relevant examinations.
Subject Classification: 97E54, 97D64, 97U44
-
Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
109-128Views:115The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education. -
The tradition of problem-posing in Hungarian mathematics teaching
233-254Views:298Based on the literature, Pólya was influential in problem-posing research. The present paper draws attention to a book written with Pólya's collaboration, which has not yet received sufficient emphasis in the problem-posing literature. On the other hand, Pólya's impact on mathematics education in Hungary has been significant, including the problem-posing paradigm. Two works, published only in Hungarian, that rely heavily on problem-posing are highlighted. Furthermore, it is presented how problem-posing appeared in the Hungarian Complex Mathematics Teaching Experiment (1962-78) led by Tamás Varga.
Subject Classification: 97D50
-
Straight line or line segment? Students’ concepts and their thought processes
327-336Views:205The article focuses on students’ understanding of the concept of a straight line. Attention is paid to whether students of various ages work with only part of a straight line shown or if they are aware that it can be extended. The presented results were obtained by a qualitative analysis of tests given to nearly 1,500 Czech students. The paper introduces the statistics of students’ solutions, and discusses the students’ thought processes. The results show that most of the tested students, even after completing upper secondary school, are not aware that a straight line can be extended. Finally, we present some recommendations for fostering the appropriate concept of a straight line in mathematics teaching.
Subject Classification: 97C30, 97D70, 97G40
-
The effect of augmented reality assisted geometry instruction on students' achiveement and attitudes
177-193Views:239In this study, geometry instruction's academic success for the students and their attitudes towards mathematics which is supported by education materials of Augmented Reality (AR) and its effect on the acceptance of AR and its usage by teachers and students have been researched. Under this research, ARGE3D software has been developed by using augmented reality technology as for the issue of geometric objects that is contained in the mathematics curriculum of 6th class of primary education. It has been provided with this software that three-dimensional static drawings can be displayed in a dynamic and interactive way. The research was conducted in two different schools by an experiment and control group. In the process of data collection, Geometry Achievement Test (GAT), Geometric Reasoning Test (GRT), Attitudes Scale for Mathematics (ASM), students' math lecture notes, semi-structured interviews with teachers and students and observation and video recordings were used. Results showed that geometry instruction with ARGE3D increased students' academic success. In addition, it was found that geometry instruction with ARGE3D became more effective on students' attitudes that had negative attitudes towards mathematics and it also provided support to reduce fear and anxiety. -
Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
183-195Views:203Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.
Subject Classification: 97G20, 97-U6, 97A40
-
Lehre der Trigonometrie anhand realistischer Aufgaben im Online-Unterricht
87-105Views:180The aim of our study was to explore the effects of the active use of realistic exercises in the field of trigonometry. We taught a group of 14 pupils, who were in grade 11. The most of them told us they did not plan mathematics-related studies in the future. We included realistic exercises into our teaching plan, which covered the fields of scalar product, as well as the sine and cosine theorems. Our teaching experiment was done within the framework of online teaching. Effects on the motivation, performance and results of the students were taken into consideration. We also attempted to examine the effects of online teaching on motivation and whether the use of realistic exercises is worthwhile in an online classroom environment. Performance of the students showed a tendency of improvement when they were dealing with the material through realistic exercises even despite the teaching happened online.
Subject Classification: 97C70, 97D40, 97G60
-
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 24-26, 2014 Eger, Hungary
117-134Views:110The meeting Researches in Didactics of Mathematics and Computer Sciences
was held in Eger, Hungary from the 24th to the 26th of January, 2014 at the
Eszterházy Károly College. It was organized by the PhD School of Mathematics and Computer Sciences of the University of Debrecen and the Eszterházy Károly College in Eger.
The 58 participants – including 43 lecturers and 18 PhD students – came from 7 countries, 15 cities and represented 22 institutions of higher education. -
Teaching of financial mathematics using Maple
289-301Views:148The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc. -
The Project Method and investigation in school mathematics
241-255Views:133The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics. -
Assimilation of mathematical knowledge using Maple
321-331Views:105For more than four years we have been teaching a Maple course at University of Debrecen for prospective mathematics teachers. The aim of the course is that students get some experience on mathematical visualization with Maple. At the last part of the course the student is provided with a problem of geometrical flavor. Within three or four weeks he/she must obtain a solution. In this paper we present and analyze two of student projects: rotation of the hypercube and drawing of complex functions. The concluding remark is that most of the students will profit from using Maple for such type of problems: it helps to assimilate mathematical knowledge. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 23-25, 2015 Novi Sad, Serbia
141-162Views:121The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Novi Sad, Serbia from the 23th to the 25th of January, 2015 at the University of Novi Sad. It was organized by the PhD School of Mathematics and Computer Sciences of the University of Debrecen and the Department of Mathematics and Informatics of the University of Novi Sad.
The 70 participants – including 42 lecturers, and 18 PhD students – came from 9 countries, 28 cities and represented 40 intstitutions of higher education. -
Cognitive conflict as a tool of overcoming obstacles in understanding infinity
279-295Views:78This paper, based on current research, is devoted to obstacles that appear in the process of understanding the concept of infinity. In its introductory part the fundamental types of epistemology obstacles are formulated. The cognitive conflict and its role in overcoming these obstacles are analysed in the following section of this research. Finally, the authors focus on research methodology and the results of the three-year research project. The problems are illustrated by means of real experimental interviews. -
Our duties in talent management in the light of the results of the International Hungarian Mathematics Competition of 2017
55-71Views:108The 4th International Hungarian Mathematics Competition held in Transcarpathia, Beregszász between April 28 and May 1, 2017, was organized by the Hungarian Carpathian Hungarian Teachers' Association (KMPSZ) and the Ferenc Rákóczi II. Transcarpathian Hungarian Institute (II. RFKMF).
The venue for the competition was the building of the Ferenc Rákóczi II. Transcarpathian Hungarian Institute. 175 students participated in the competition from Hungary, Romania, Serbia, Slovakia and Transcarpathia.
In this article, we are going to deal with the problems given in the two rounds to students in grades 5 and 6, and, in the light of expectations and performance, we make some suggestions for a more effective preparation of talented students on after-school lessons. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:130Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Writing a textbook – as we do it
185-201Views:64Recent surveys studying mathematics teaching show that there is a great variety in the level of mathematics teaching in Hungary. To increase efficiency (and decrease differences between schools) it is essential to create textbooks with new attitudes. The experiment we started after the PISA survey of 2000, produced a textbook that is new, in some sense even unusual in its attitude and methods. This paper presents the experiences we gained in the course of this work. -
Blind versus wise use of CAS
407-417Views:147During my courses for mathematics major students I often use technology linked to the arising problems. In such cases I noted that some students were used to learn just some procedures, which made them able to solve (partially) some problems and when they got the result, they accepted it passively and did not relate it to the initial problem.
In this paper I outline a strategy and investigate some simple exercises about how to develop a critical attitude towards the results obtained by technology in an introductory course to CAS.
I believe that wise use of technology offers an effective method in teaching mathematics, without reducing the students' mental contribution. -
Teaching fractions at elementary level in the light of Hungarian mathematics textbooks in Romania
149-159Views:155According to the new curriculum in Romania, fractions are introduced in the second grade. The present study analyses Hungarian elementary mathematics textbooks on the topic of fractions focusing on the types of tasks in the textbooks, the significance of representations and the proportion of word problems. Additionally, the paper presents a questionnaire-based research on teachers’ opinion regarding the adequacy and sufficiency of the digital materials and exercises related to fractions in the textbooks.
Subject Classification: 97F40, 97F80, 97U20, 97U50
-
Engineering and Economic Mathematics for Engineering Management Students
35-50Views:117In this article we describe the first part of a case study, which was made with 48 Engineering Management students. The participants of the case study were MSc level students at the Szent István University, Gödöllő. We looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning. Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficacy, furthermore their achievement in the subject of Engineering and Economic Mathematics. Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used. As an example we introduce one of the knowledge tests connected with the first half of the course about linear programming and graph theory. We detail its didactical background and show the results of the students.