Search
Search Results
-
Seedling morphology of different wheat genotypes at early stages under hydrocultural conditions
249-254Views:243Consuming “sprouted seeds” is one of the most important factors of a healthy diet. An experiment was conducted in the University of Debrecen, Research Centre of Nyíregyháza (Hungary) in 2014 to analyse some morphological traits of four winter wheat genotypes (Triticum aestivum L.) and one spelt (T. spelta) variety. Our results showed that the spelt wheat variety “Franckenkorn” could maintain higher root length throughout the experimental period. On average, both “Perbetei” and “Franckenkorn” varieties could maintain higher root number compared to the other varieties. The extensive breeding line “1401 HK” had the highest shoot length throughout the whole experiment, being significantly higher than the landrace variety “Perbetei” and both of the varieties “KG Bendegúz” and “KG Kunhalom”. It could be concluded that “KG Bendegúz” cultivar and “Perbetei” landrace seem to be the most suitable for aquaculture techniques. In addition, “1401 HK” breeding line can be the most suitable for the production of juice since the minimal required shoot length (12 cm) was achieved within the shortest period of time after sowing (9 days). This breeding line and “Franckenkorn” can also be suitable for production of “wheatgrass”, because it is consumed without roots. Further research is needed to evaluate nutritional values of these genotypes.
-
The effect of sulphur and nitrogen supply on the growth and nutrient content of spring wheat (Triticum aestivum L.)
65-70Views:236Sulphur is an essential element for plants. Decreasing sulphur deposition from the air, and the use of more concentrated phosphate fertilizers, which contain no sulphur, has led to reports of sulphur deficiencies for wheat. Sulphur deficiency significantly affects yield and also the quality of wheat. The pot experiment was set up on calcareous chernozem soil at Látókép, Hungary, test plant was spring wheat (Triticum aestivum L). Seven treatments were used where nitrogen and sulphur were supplied as soil fertilizers in increasing rates (NS1, NS2, NS3) and in foliar fertilizer as well (NS1+fol., NS2+fol., NS3+fol.). Plant aboveground biomass production was determined in samples taken in the stages of development BBCH 29-30, 51-59, 61-69, 89. The nitrogen and sulphur content of straw and grain were measured. N/S ratios of grain and straw were calculated. The weights of grain were ranging between 8.6–16.1 g/pot. NS2 and NS2+fol. treatments produced the highest values. Foliar fertilizer had no further effect on grain. Analysing the values of the straw, it was observed that tendencies were similar to values of grain. The NS2 treatment produced the highest weight of straw and the NS3 rate already decreased that amount. The obtained results show the unfavourable effect of excessively high rate applied in NS3 treatment. The supplementary foliar fertilizer had no significant influence on the weight of straw. Both N and S-uptake of plant was very intensive at the stem elongation stage, then the N and S-content of plant continuously decreased in time in all treatments. The N-content of grain ranged between 2.215–2.838%.The N-content of grain slightly increased with increasing of nitrogen doses. In the higher doses (NS2, NS3) foliar fertilization slightly increased the nitrogen content of grain, although this effect was not statistically proved. The N-content of straw varied from 0.361 to 0.605%. The growing dose of soil fertilizer also considerably increased the nitrogen content of straw. Foliar fertilization further increased the nitrogen content of straw. The S-content of grain ranged between 0.174–0.266%. The lowest fertilizer dose (NS1) significantly increased the sulphur content of grain. The further increasing fertilizer doses (NS2, NS3) did not cause additional enhance in sulphur content of grain.The foliar fertilizer also did not change the sulphur value of plant. The increasing amount of soil fertilizer and the supplementary foliar fertilizer had no effect on the sulphur content of straw. The treatments influenced the N/S ratios of grain and straw. On the basis of experimental results it can be concluded that the examined nitrogen and sulphur containing soil fertilizer had positive effect on the growth and yield of spring wheat grown on the calcareous chernozem soil. The soil fertilizer application enhanced the grain nitrogen and sulphur content. The highest rate of fertilizer (600 kg ha-1) proved to have decreasing effect on the yield. The sulphur and nitrogen containing foliar fertilizer did not have significant effect on the yield parameters but slightly increased the nitrogen content of plant. -
Correlations study between the selenium content of wheat grass (Triticum aestivum L.) and wheat seeds grown on different soil types
117-121Views:153In the course of the research we determined selenium and dry-matter content of 35 wheat grasses and 35 wheat seeds. The selenium content of the preparation plant samples was measured by spectrofluorimetric determination (ʎexcitation=380 nm, ʎemission=519 nm) of the resulted piaz-selenol complex. It was established that between the selenium content of the wheat grass and wheat seed the correlation coefficient was 0.36 at p=0.05 level which indicates a medium close correlation. Similarly, there was a medium close correlation between selenium content of the wheat grass calculated on dry-matter basis and total selenium content of the wheat, with a correlation coefficient of 0.40 at p=0.02 level.
-
Increase of Wheat (Triticum aestivum L.) Resistance to Leaf Rust (Puccinia tritici) via Gene Transformation
127-129Views:81Leaf rust is one of the most significant fungal disease of wheat not only in Hungary but also in other parts of the world. For improving leaf rust resistance of winter wheat variety (Hajdúság, 2003) produced by conventional breeding methods, verified by results of variety tests, showing outstanding results in the aspect of the most important economic values, integration of tissue culture technics, genetic engineering and traditional
methods may provide facilities. Building the gene(s) responsible for resistance into the determined genome can improve the resistance in a way that changes other features of the plant slightly or not at all. In the course of genetical transformation of the variety Hajdúság we applied one of the wheat’s own effecient green-tissue specific insurer genetical regulator, the promoter of ribulose carboxylase 1-5 bisphosphate (RuBisCo) ‘s small
subunit to control the expression of the gene cmg1. -
The effect of NPK treatments on the Cu and Fe content of winter wheat (Triticum aestivum L.)
31-34Views:216In this study the effect of N, P and K nutrients on the Cu and Fe content of winter wheat (Triticum aestivum L.) grains was investigated in a long-term fertilization experiment set up in Nagyhörcsök. Samples were also harvested from four experimental stations of the Hungarian national long-term fertilization trials. These are the following: Bicsérd, Iregszemcse, Karcag, and Putnok. Plant samples were collected in 2005 which was very wet. Our results from Nagyhörcsök were compared with the Cu and Fe content of samples which were harvested from control plots of other experimental stations. The Cu and Fe content of grain samples were measured using inductively coupled plasma mass spectrometer (ICP-MS) followed by digestion with HNO3-H2O2 solution. All data were subjected to ANOVA, and when significant differences (P<0.05) were detected, Duncan’s test was performed to allow separation of means.
The main conclusions are as follows: Cu and Fe content of wheat grains was higher and higher in every NPK treatments. Samples were harvested from the control plots of Iregszemcse and Bicsérd have higher Cu content than the treated samples from Nagyhörcsök.
-
Examination of extensographical parameters of winter wheat (Triticum aestivum) flour
109-115Views:141In the trade of the European Union principally the analysis of alveographical and extensographical parameters mean the acceptance system.
In the present study we analysed the extensographical parameters of 10 winter wheat varieties breed by the Cereal Research Non Profit Company with Brabender extensigraph and we made a comparison, correlation among the results. The examinations with Brabender the following among: show the GK Kalász and the GK Élet varieties show high resistance of extension and the GK Petur variety produces high extensibility. The GK Garaboly has shown low extensibility and energy. The other parameters had different values in the examined three years. The measurings with SMS2 Texture Analyser show middle positive correlation between extensibility and subarea. There are weak correlation between at the significantial level in the 90, 135 resistence of extension by Brabender and by SMS2 Texture Analyser and in the 45 extensibility by Brabender and by SMS2 Texture Analyser of relaxed dough. There is no correlation among other parameters. -
Evaluation of the yield and baking quality of winter wheat (Triticum aestivum L.) varieties in different cropyears
95-100Views:119We have investigated the effect of the cropyear, the genotype, the nutrient supply and their interactions on the yield and the quality parameters of three different winter wheat genotypes in three different cropyears. The most disadvantageous influence on the yield averages was caused by the moist weather of 2010, when yield results fell behind the mean of the two other examined years and the nutrient optimum was around low doses. The optimal cropyear turned out to be the ordinary 2011, the best yield results were experienced during this cropyear. Although the drier periods in 2012 decreased the yield values, the varieties could realize high yield maximum values. Considering the yield results, Genius turned out to be the best variety. In respect of the quality traits, 2010 turned out to be the best cropyear in case of all the three varieties. Despite the dry weather of the spring of 2012, the precipitation fell during flowering and ripening phases had positive impact on the grain-filling processes and contributed to the development of better quality. As a consequence of the significantly lower amount of precipitation during the generative phenological phases, the worst quality parameters were realized by the varieties in 2011.
In respect of crop year effect, 2010 was unfavourable for the amount of yield, but the most beneficial for the quality. 2011 was the most advantageous for the yield amounts but disadvantageous for the quality parameters. Although in 2012 extreme crop year effects were experienced after each other (dry and warm spring, moist and warm summer), the yield average and quality trait values were close to the yield averages of 2011 and quality parameters of 2010. Analyzing our results we can state that the average crop year was favourable rather for the yield. The appropriate amount of precipitation during the whole 2010 and that during the generative phenophases in 2012 favoured the development of good quality.
Consequently, the appropriate amount of precipitation is essential for the development of good quality during the grain-filling period. The negative crop year effects were only compensated but not eliminated by the good nutrient supply. Genius achieved excellent yield averages but performed worse quality parameters than Mv Toldi, whose quality parameters were outstanding but the yield averages fell slightly behind those of Genius. Considering the yield results, the variety Genius turned out to be the best, while Mv Toldi was the best in quality.
-
Advancement of a Common Wheat (Triticum aestivum L.) Selection System
8-11Views:99All the research in Hungary and other countries in Europe focus on improving the quality of crops and increasing the competitiveness of production.
In this respect, we have to advance the conventional technological elements, reduce the application of pesticides and fertilizers, and produce new varieties suitable for environmentally-sound production. In our crop breeding programs, we applied conventional and biotechnological methods (embryo rescue and double haploid methods) in order to get somaclonal and gametoclonal variations.
We produced winter wheat lines (HP-31-95, HP-82-96) by traditional way, which have high baking qualities and high nutrient efficiency. Some diseases can limit the quantity and quality of a wheat crop. We examined several wheat diseases in our winter wheat candidates, and we found that our progenies have resistance to leaf rust.
With respect to a serious problem was the small quantity of applied fertilizers and the other externals, our research focused onto advance a common wheat selection system, with the help of it, we can handle these problems. We have summarized that our selected progenies can compete with the registered varieties with quality and environmental respect. -
Overview of test methods used to classify wheat flour and bread samples – REVIEW
27-34Views:127In Hungary, common wheat (Triticum aestivum ssp. vulgare) is of good quality and world famous. In addition, it plays an important role in the human diet. The classification of flours ground from wheat is quite decisive and there are several methods for its examination. The most important flour testing requirements include moisture content, protein content gluten properties and the most important bakery value number. The measured characteristics give us the opportunity to conclude about the properties of the dough, and then bakery products. Several dynamic and static methods have been developed to study the physical properties of dough. The evaluation of products can be carried out in several respects with the help of a baking test. The multitude of methods currently used to qualify flour, dough and finished products also proves that the overview of the methods is quite topical.
-
Growth and clorophyll content dynamics of winter wheat (Triticum aestivum L.) in different cropyear
101-105Views:146The experiments were carried out at the Látókép experimental station of the University of Debrecen on chernozem soil in a long term winter wheat experiment in the season of 2011 and 2012 in triculture (pea-wheat-maize) and biculture (wheat-maize) at three fertilisation levels (control, N50+P35K40, N150+P105K120). Two different cropyears were compared (2011 and 2012).
The research focused on the effects of forecrop and fertilisation on the Leaf Area Index, SPAD values and the amount of yield in two different cropyears. We wanted to find out how the examined parameters were affected by the cropyear and what the relationship was between these two parameters and the changes of the amount of yield.
Examining the effects of growing doses of fertilizers applied, results showed that yields increased significantly in both rotations until the N150+PK level in 2011 and 2012. By comparing the two years, results show that in 2011 there was a greater difference in yields between the rotations (7742 kg ha-1 at N150+PK in the biculture and 9830 kg ha-1 at N150+PK in the triculture). Though wheat yields following peas were greater in 2012, results equalized later on at N150+PK levels (8109–8203 kg ha-1).
Due to the favorable agrotechnical factors, the leaf and the effects of the treatments grown to a great extent in 2011, while in 2012 the differences between treatments were moderate. Until the N150+PK level, nitrogen fertilisation had a notable effect on the maximum amount of SPAD values (59.1 in the case of the biculture and 54.0 in the triculture). The highest SPAD values were measured at the end of May (during the time of flowering and grain filling) in the biculture. In the triculture, showed high SPAD values from the beginning. The same tendency could be observed in the 2012 cropyear, although increasing doses of fertilizers resulted in higher SPAD values until N150+PK level only from the second measurement. Maximum SPAD values were reached at the end of May in both crop rotation system
-
Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
49-53Views:230The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.
The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.
-
Challenges and limtations of site specific crop production applications of wheat and maize
101-104Views:149The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.
-
Nutrition reaction of different varieties of winter wheat (Triticum aestivum L.) bred in Karcag
63-67Views:183In our study the nutrition reaction of four varieties of winter wheat (KG Bendegúz, KG Kunhalom, KG Kunkapitány, KG Széphalom) has been investigated. In the experiment the effect of twenty different nutrition doses on the yield and thousand kernel weight of the wheat varieties has been studied. Significant difference could be figured out among the yield and thousand kernel weight of the wheat varieties, so the choice of the proper variety determines the quantity of yield. KG Kunkapitány had the highest yield, while KG Széphalom had the highest thousand kernel weight in the experiments.
Investigating the effect of the nutrients on the yield the conclusion was that all nitrogen doses had significant yield increasing effect compared to the untreated plots, but among the 40, 80 and 120 kg ha-1 doses there was no statistical difference. In the case of phosphorus the 40 kg ha-1 dose showed statistically verifiable increase of the yield, while potassium doses have no influence on the yields. The thousand kernel weights reached the maximum values where the highest nutrient doses were applied.
-
Exogenous salicylic acid treatments enhance tolerance to salinity of wheat (Triticum aestivum) plantlets
34-38Views:131Salt stress, an abiotic stress, determines modifications of some biochemical indicators, like, antioxidant enzymes, proline (amino acid
accumulate in higher plants under salinity stress) content, and some physiological processes including: plant growth and development. In
this paper we studied the influence of exogenous treatment of wheat seeds, with 0.1 mM salicylic acid (SA) solution, in the plant response to
salt stress. The treatment was applied by presoaking the seeds in the treatment solution for 12 hours before germination. The results showed
that exogenous 0.1 mM SA solution, administrated to the wheat cariopses significantly ameliorated the negative effect of salt stress in first
week of germination in laboratory conditions. -
Comparison of Pálfai’s drought index and the Normalised Precipitation Index in the North Great Plain region
59-64Views:229Agriculture has always been an important role in economy, food supplies, sustainability of society and creation of job opportunities in Hungary. Our country has resource-related strength of agriculture, because we have more than 4.5 million ha for agricultural production. Agricultural production can be influenced by several factors, including climate, hydrology, soil conditions and antropogenic impacts. Climate determines the quality and quantity of the crop yields. The climate conditions in Hungary are variable and it shows spatial and temporal extremes. As a result of this, drought have become more frequent in our country (2003, 2007, 2009, 2012), which is reflected in the decline in yields as well. In the present study, Pálfai's Drought Index (PAI) and the Standardized Precipitation Index (SPI) were compared 2003–2012 in Debrecen. The temperature and precipitation data were calculated from data provided by a local meteorological station to work out PAI, while the SPI-3 index values were downloaded from the database of the European Drought Observatory. This allowed to drought assessment in a local and regional scale. Our study was supplemented with SPI-3, soil moisture anomalies, PAI and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) to evaluating the impact of drought on agriculture.
-
Baking quality of winter wheat (Triticum aestivum L.) in the long-term experiments on chernozem soil
152-156Views:100Agriculture has traditionally an important role in Hungarian economy and rural development. About 75 % of Hungary’s total territory
is under agricultural land use. Because of ecological conditions and production traditions cereals (wheat, maize etc) have the greatest
importance in Hungarian crop production. In the 1980’s the country-average yields of wheat were about 5,0-5,5 t ha-1 („industrial-like”
crop production-model). In the 1990’s the yields of wheat dropped to 4,0 t ha-1 because of low input-using and wide application of the issues
of environmental protection and sustainability. Winter wheat production for quality has a decisive role in certain regions of Hungary
(eastern and middle-parts).
The quality of wheat is complex and different. Three major growing factor groups determine the quality of winter wheat: genotype,
agroecological conditions and agrotechnical factors. In wheat production for quality the selection of the variety is the most important
element. Our long-term experiments proved that the quality traits of a variety means the highest (maximum) limit of quality which could not
be exceeded in fact. During the vegetation period of wheat the different ecological and agrotechnical factors could help or on the contrary
could demage the quality parameters of wheat.
The agrotechnical factors determining the baking quality of wheat can be divided into two groups: the first group means the factors with
direct effects on quality (fertilization, irrigation, harvest); the second group contains the elements with indirect effects on quality (crop
rotation, tillage, planting, crop protection).
Appropriate fertilization could help to manifest the maximum of quality parameters of a wheat genotype and could reduce the qualityfluctuation
in unfavourable ecological and agrotechnical conditions. -
Comparison of chemical parameters of enzyme active and inactive malt types
161-166Views:249Nowadays there is an increasing emphasis on the use of raw materials. Typically, raw materials – in this study malt – are used in animal feeds and used in the brewing industry. However, in terms of quality (eg. high fibre content), these can be included in human nutrition, we have limited information on this possibility. The aim of our work was to compare different malt flours and examine the possibility of using malt in the baking industry. We were to investigate some of the most relevant parameters, such as dietary fibre content, crude protein content, fat content, carbohydrate content, dry matter content, moisture content, salt and energy content. In the future, we aim to conduct a research on some of these parameters with different malt types as the brewing industry uses novel ingredients different cereals, pseudocereals such as amaranth (Amaranthus spp.), oat (Avena sativa L.), quinoa (Chenopodium quinoa Willd.) in addition to the spring barley (Hordeum vulgare L.) or wheat (Triticum aestivum L.). Based on brewing studies, malt has a high fibre and protein content. Having these advantageous qualities, malt should be part of humans’ healthy diet. Using malt flour in the baking industry can be a new direction which can lead to creating a healthier lifestyle and healthier eating habits than suggested by the WHO (World Health Organization).
-
Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
15-22Views:328Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.
Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.
Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.
-
Research on the allelopathic effect among the species Tanacetum vulgare and some agricultural crops
105-109Views:158The research presents the results of the allelophatic effect upon the germination and growth of plants, immediately after springing, viewed as the interaction between the species of Tanacetum vulgare sin Chrysanthemum vulgare and three other crops: wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rape (Brassica napus ssp. oleifera L.). The experiments that were performed consisted in applying treatments with aqueous extracts obtained from the roots, leaves, stems and flowers harvested from T. vulgare plants upon the seeds of the three agricultural crops mentioned before. In all aqueous extracts, the results indicate the presence of some chemical compounds that have inhibiting allelophatic effect. The plants upon which tests were made showed great sensitivity, the results on their germination and growth being significantly negative and highly significantly negative.
The conclusions of this research sustain the idea of setting new research objectives in order to discover the chemical compounds from T. vulgare extracts that have such a stong effect and the possibilities they offer. -
Impact of nitrogen and sulphur fertilization on the growth and micronutrient content of spring wheat (Triticum aestivum L.)
211-219Views:197Micronutrients are as important as macronutrients for crops. Each micronutrient has its own function in plant growth. Zinc is important for membrane integrity and phytochrome activities. Copper is an essential micronutrient required for the growth of wheat. Manganese is required for enzyme activation, in electron transport, and in disease resistance. The pot experiment was set up in greenhouse on calcareous chernozem soil Debrecen-Látókép with a spring wheat. In certain development stages (according to BBCH growth scale of wheat), at the beginning of stem elongation (29–30), at the heading (51–59), at the flowering (61–69) stage three average plants were removed from all pots for analysis. Fresh and dry weight of the plant samples were measured. Plant leaves after drying were digested by HNO3-H2O2 methods and manganese, zinc and copper contents of plant were quantified by atomic absorption spectrophotometry. At the flowering stage, when the nutrient uptake of plants is the most intensive, the weight of wheat ranged between 0.94–1.57 g plant-1. In this development stage, the NS2 treatment produced the highest weight of wheat, and compared to this the NS3 treatment decreased that value already. The results show unfavourable effect of NS3 treatment. On the basis of microelement content of wheat and the weight of a plant, nutrient uptake by plant were calculated. At the beginning of growth the starter treatment had positive effect on Cu-uptake compared to the NS1 treatment, where the same dose of fertilizer was stirred into the soil. Wheat is very sensitive to copper deficiency, so copper dissolved by starter treatment could be favourable to the early development of wheat. At flowering stage the Zn-uptake of wheat became the highest and it was between 133.7–234.6 mg plant-1. The Mn-uptake of wheat plant was higher than the Cu- and Zn-uptake of wheat.
This phenomenon can be explained by the fact that the untreated soil had higher Mn-content, than Cu- and Zn-content. To summarize the results, it can be stated, that the copper uptake of wheat was more affected by the different treatments in the stage of stem elongation, while Mn- and Zn-uptake of wheat were influenced primarily in the stage of heading and flowering.