Articles

Overview of test methods used to classify wheat flour and bread samples – REVIEW

Published:
2023-12-01
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Baráth, N., Ungai, D. K., & Kovács, B. (2023). Overview of test methods used to classify wheat flour and bread samples – REVIEW. Acta Agraria Debreceniensis, 2, 27-34. https://doi.org/10.34101/actaagrar/2/12116
Received 2022-12-12
Accepted 2023-09-29
Published 2023-12-01
Abstract

In Hungary, common wheat (Triticum aestivum ssp. vulgare) is of good quality and world famous. In addition, it plays an important role in the human diet. The classification of flours ground from wheat is quite decisive and there are several methods for its examination. The most important flour testing requirements include moisture content, protein content gluten properties and the most important bakery value number. The measured characteristics give us the opportunity to conclude about the properties of the dough, and then bakery products. Several dynamic and static methods have been developed to study the physical properties of dough. The evaluation of products can be carried out in several respects with the help of a baking test. The multitude of methods currently used to qualify flour, dough and finished products also proves that the overview of the methods is quite topical.

References
  1. Agyare, K.–Xiong, Y.–Addo, K.–Akoh, C. (2006): Dynamic Rheological and Thermal Properties of Soft Wheat Flour Dough Containing Structured Lipid. Journal of Food Science. 69.7. 297–302. https://doi.org/10.1111/j.1365-2621.2004.tb13633.x
  2. Atwell, W. (2016): Wheat Flour. Second Edition. USA, pp. 164.
  3. Auger, F.–Morel, M.–Lefebvre, J.–Dewilde, M.– Redl, M. (2008): A parametric and microstructural study of the formation of gluten network in mixed floure-water batter. Journal of Cereal Science. 48. 349–358.
  4. Autio, K.–Flander, L.–Kinnunen, A.–Heinonen, R. (2001): Bread Quality Relationship with Rheological Measurements of Wheat Flour Dough. Cereal Chem. 78. 6. 654–657.
  5. Bagdi, A.–Tóth, B.–Lőrincz, R.–Szendi, S.–Gere A.–Kókai, Z.–Sipos, L.–Tömösközi S. (2016): Effect of Aleurone-Rich Flouron Composition, Baking, Textural, and Sensory Properties of Bread. Lwt-Food Science and Technology. 65. 762–769.
  6. Banu, I.–Stoenescu, G.–Ionescu, V.–Aprodu, I. (2011): Estimation of the Baking Quality of Wheat Flours Based on Rheological Parameters of the Mixolab Curve. Czech Journal of Food Sciences. 29. 1. 35–44.
  7. Capelli, A.–Cini, E.–Guerrini, L.–Masella, P.–Angeloni, G.–Parenti, A. (2018): Predictive models of the rheological properties and optimal water content in doughs: An application to ancient grain flours with different degrees of refining. Journal of Cereal Science. 83. 229–235.
  8. Carver, B.F. (2009): Wheat Science and Trade, Wheat Science and Trade. pp. 569.
  9. Castro, W.–Oblitas, J.–Chuquizuta, T.–Avila-George, H. (2017): Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science. 74. 194–199.
  10. Codină, G.–Mironeasa, S.–Daniela, V.–Voica-Mironeasa, C. (2013): Multivariate Analysis of Wheat Flour Dough Sugars, Gas Production, and Dough Developmental Different Fermentation Times. Czech Journal of Food Sciences. 31. 3. 222–229.
  11. Csonka, K. (1998): Textbook for milling and compound feed technician and miller. Institute of Agricultural Education. pp. 158.
  12. Curic, D.–Novotni, D.–Skevin, D.–Rosell, C.–Collar, C.–Le, B.–Colic,B.–Gabric D. (2008): Design of a quality index for the objective evaluation of bread quality: Application to wheat breads using selected bake off technology for bread making. Food Research International. 41. 7. 714–719.
  13. Czaja, T.–Sobota, A.–Szostak R. (2020): Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. 9. 3. 280–287.
  14. Dabčević, T.–Hadnađev, M.–Pojić, M. (2009): Evaluation of the Possibility to Replace Conventional Rheological Wheat Flour Quality Control Instruments with the New Measurement Tool – Mixolab. Agriculturae Conspectus Scientificus. 74. 3. 169–174.
  15. Day, L. (2011): Wheat gluten: Production, properties and application, Handbook of Food Proteins. Woodhead Publishing Limited. 267–288.
  16. Fratianni, A.–Irano, M.–Panfili, G.–Acquistucci, R. (2005): Estimation of Color of Durum Wheat. Comparison of WSB, HPLC, and Reflectance Colorimeter Measurements. J. Agric. Food Chem. 53. 7. 2373–2378.
  17. Gras, P.–Carpenter, H.–Anderssen, R. (2000): Modelling the Developmental Rheology of Wheat-Flour Dough using Extension Tests. Journal of Cereal Science. 31. 1. 1–13.
  18. Guessasma, S.–Chaunier, L.–Della-Valle, G.–Lourdin D. (2011): Mechanical modelling of cereal solid foods. Trends in Food Science & Technology. 22. 4. 142–153.
  19. Guy, D.–Maude, D.–Firenze, H.–Hubert, C.–Luc, S.–Kamal K. (2022): Rheology of wheat flour dough at mixing. Food Physics&Materials Science. 47.
  20. Győri, Z. (2003): Storage and processing of agricultural products. Agricultural Science Centre of the University of Debrecen. Department of Food Science and Quality Assurance. pp. 148.
  21. Győri, Z.–Győriné, M. I. (1998): Agricultural Knowledge Publishing House, Budapest. 83 p.
  22. Győri, Z.–Győriné, M. I. (2011): Quality and quality of maize and corn. Budapest. pp. 185.
  23. Haraszi, R. (2002) Functional characterization of cereal germ and amaranth proteins in model and complex systems. PhD dissertation, Budapest. pp. 99.
  24. Haraszi, R.–Gras, P.W.–Tömösközi, S.–Salgó, A.–Békés, F. (2004): Application of a Micro Z-Arm Mixer to Characterize Mixing Properties and Water Absorption of Wheat Flour. Cereal Chem. 81(5):555–560.
  25. Helou, C.–Widehem, P.–Robert, N.–Branlard G. (2016): The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread. Food & Function. 7. 2498–2507.
  26. Hódsági, M.–Gelencsér, T.–Salgó, A. (2010): The applicability of the Mixolab technique. Élelmiszervizsgálati Közlemények. 56. 3. 142–152.
  27. Horváthné, A.–Ács, P.–Baráné, H. O.–Deák A. (2002): Estimation of the quality of meat flours by means of a pasta stretching-stretching instrument. Acta Agraria Debreceniensis. 1. 38–44.
  28. Hrušková, M.–Faměr, O. (2003): Evaluation of wheat flour characteristics by the alveo-consistograph. Polish Journal of Food and nutrition sciences. 12. 2. 25–28.
  29. Hrušková, M.–Faměra O. (2003): Prediction of wheat and flour Zeleny sedimentation value using NIR technique. Czech Journal of Food Sciences. 21. 3. 91–96.
  30. Hrušková, M.–Skvrnová, J. (2003): Use of Maturograph and Spring Oven for the Determination of Wheat Flour Baking Characteristics. Czech Journal of Food Sciences. 21. 2 71–77.
  31. Husejin, K.–Mirsad, S.–Amra, O.–Midhat, J.–Nihada, A.–Indira S. (2009): The Importance of Determination of some Physical – Chemical Properties of Wheat and Flour. Agricultueae Conspectus Scientificus. 74. 3.197–200.
  32. In, H.–Devin G. (2010): Chemistry of Bread Aroma: A Review. Food Science and Biotechnology. 19. 3. 575–582.
  33. Indrani, D.–Sai Manohar, R.–Rajiv, J.–Venkateswara G. (2007): Alveograph as a tool to assess the quality characteristics of wheat flour for parotta making. Journal of Food Engineering. 78. 4. 1202–1206.
  34. Jusoh Mohd, Y.M.–Chin, N.L.–Yusof, Y.A.–Abdul Rahman, R. (2009): Bread crust thickness measurement using digital imaging and Lab colour system. Journal of Food Engineering. 94. 3–4. 366–371.
  35. Kim, Y.–Cornillon, P.–Campanella, O. H.–Stroshine, R.–Lee, S.–Shim J. (2007): Small and Large Deformation Rheology for Hard Wheat Flour Dough as Influenced by Mixing and Resting. Food Engineering and Physical Properties. 73.1. DOI: 10.1111/j.1750-3841.2007.00599
  36. Knezevic, D.–Rosandic, A.–Kondic, D.–Radosavac, A.–Rajkovic, D. (2017): Effect of glutenformation on wheat quality. Columella. Journal of Agricultural and Environmental Sciences. 4. 1. 169–174. DOI: 10.18380/SZIE. COLUM.2017.4.1. suppl
  37. Kostyuchenko, M.–Martirosyan, V.–Nosova, M.–Dremucheva, G.–Nevskaya, E.–Savkina, O. (2021): Effects of α-amylase, endo-xylanase and exoprotease combination on dough properties and bread quality. Agronomy Research.19. 3. 1234–1248.
  38. Kweon, M.–Slade, L.–Levine, H. (2011): Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and Value in Predicting Flour Functionality in Different Wheat-Based Food Processes and in Wheat Breeding—A Review. Cereal Chem. 88. 6. 537–552.
  39. Lambertné, M. A. (2012): Módszer kenyérbélzet állományjellemzőinek meghatározására. Doktori értekezés. Budapest. 112. p.
  40. Lásztity, R. (1996): The Chemistry of Cereal Proteins. Second Edition, CRC Press Inc. 328.
  41. Lásztity, R.–Bárány A. (1959): A tészta relaxációjának vizsgálata laborgráffal (I. rész). Élelmiszervizsgálati Közlemények. 5. kötet 3. füz. 48–51.
  42. Leitgeb, M.–Knez, Ž.–Podrepšek, G. (2022): Enzyme Activity and Physiochemical Properties of Flour after Supercritical Carbon Dioxide Processing. Foods. 11. 13 1826. https://doi.org/10.3390/foods11131826
  43. Li, N.–Wang, S–Wang, T.–Liu, R.–Zhi, Z.–Wu, T.–Sui, W.–Zhang, M. (2022): Valorization of Wheat Bran by Three Fungi Solid-State Fermentation: Physicochemical Properties, Antioxidant Activity and Flavor Characteristics. Foods. 11. 12. 1722.
  44. Loch, J. (1999): Agrokémia. Egyetemi jegyzet. Debreceni Egyetem Agrártudományi Centrum Mezőgazdaságtudományi Kar, Debrecen. 124.
  45. Lorenz, K.–Maga, J. (1975): The Fatty Acid, Carbonyl, n-Hydrocarbon, and Phenolic Acid Composition of Wheat and Triticale Flours. Journal of Milk and Food Technology. 38. 2. 84–86.
  46. Mæhre, H.K.–Dalheim, L.–Edvinsen, G.K.–Elvevoll, E.O.–Jensen, I.J. (2018): Protein Determination—Method Matters. 7. 1. 5.
  47. Mani, K.–Trägårdh, C.–Eliasson, C.–Lindahl, L. (1992.): Water Content, Water Soluble Fraction, and Mixing Affect Fundamental Rheological Properties of Wheat Flour Doughs. Journal of Food Science. 57. 5. 1198–1209.
  48. Mann, G.–Diffey, S.–Allen, H.–Pumpa, J.–Nath, Z.–Morell, M.K.–Cullis, B.–Smith, A. (2008): Comparison of Small-Scale and Large-Scale Mixing Characteristics: Correlations Between Small-Scale and Large-Scale Mixing and Extensional Characteristics of Wheat Flour Dough. Journal of Cereal Science. Vol. 47, No. 1. pp. 90–100.
  49. Mariotti, F.–Tomé, D.–Mirand, P. (2008): Converting Nitrogen into Protein—Beyond 6.25 and Jones' Factors. Critical Reviews in Food Science and Nutrition. 48. 2. 177–184.
  50. Markovics, E. (2001): Sütőipari szempontú búzaliszt-minőség vizsgálata. Tudományos Közlemények. 22. 90–102.
  51. Matz, S. A. (1960): Bakery Technology and Engineering.3rd Edition. 696 p.
  52. Miyazaki, M.–Hung, P.V.–Maeda, T.–Morita, N. (2006): Recent Advances in Application of Modified Starches for Breadmaking. Trends in Food Science & Technology, Vol. 17, No. 11, pp. 591–599
  53. Molnár, P. (2015): Alakfelismerési kutatások néhány eredménye érzékszervi élelmiszer-minősítő módszerek továbbfejlesztéséhez sütőipari termékekre. Élelmiszervizsgálati közlemények. LXI. évf. 1. szám. 425–555.
  54. Nazarova, V.–Zhdanova, O. (2017): Development of a rapid method for determination of gluten content in wheat flour. Agronomy Research. 15. 2. 1369–1374.
  55. Papouskova, L.–Dvoracek, V.–Chrpova, J.–Horakova, V. (2009): Rheological paramters of white flour and whole flouir in modern wheat varieties evaluated by mixolab new profiler system. Proceedings of the 5th international congress flour-bread ’09 and 7th croation congress of cereal technologists. 246–251.
  56. Parenti, O.–Zanoni, B.–Giuffrè, M.–Guerrini, L. (2022): The effect of kneading speed on breadmaking from unrefined wheat flour dough. European Food Research and Technology. 248. 543–551.
  57. Park, S.–Bean, S.–Chung, O.–Seib, P. (2006): Levels of protein and protein composition in hard winter wheat flours and the relationship to breadmaking. Cereal Chemistry. 83. 418–423. https://doi.org/10.1094/CC-83-0418
  58. Pavel, M.–Luis, M.–Norma, M. (2022): Protein Ingredients in Bread: Technological, Textural and Health Implications. Fortified Cereal-Based Food stuffs: Technological, Sensory, and Nutritional Properties. 11. 16. 2399. https://doi.org/10.3390/foods11162399
  59. Pongráczné, B. Á.–Tarján, Zs. (2010): Őszi búza lisztek extenzográfos követelményei. Gazdálkodás. 54. évf. 7. szám. 762–764.
  60. Pongráczné, B. Á.–Tarján, Zs.–Sipos, P. (2010): Extenzográfos minősítés a nemzetközi búzapiacon. Élelmiszervizsgálati Közlemények. 56. 1. 18–23.
  61. Różyło, R.–Laskowski, J. (2011): Predicting Bread Quality (Bread Loaf Volume and Crumb Texture). Polish J. Food Nutr. Sci. 61. 1. 61–67.
  62. Salgó, A.–Szilveszter, G. (2011): Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science. 56. 1. 31–38.
  63. Schopf, M.–Wehrli, M.–Becker, T.–Jekle, M.–Scherf, K. (2021): Fundamental characterization of wheat gluten. European Food Research and Technology. 247. 985–997.
  64. Serrano, S.–Rincón, F.–García-Olmo, J. (2013): Cereal protein analysis via Dumas method: Standardization of a micro-method using the EuroVector Elemental Analyser. Journal of Cereal Science. 58. 1. 31–36.
  65. Sipos, P.–Tóth, Á.–Pongráczné, B. Á.–Győri, Z. (2007): A búzaliszt reológiai vizsgálata különböző módszerekkel. Élelmiszervizsgálati Közlemények. 53. 3. 145–155.
  66. Sluková, M.–Kubín, M.–Horáčková, Š.–Příhoda, J. (2015): Application of Amylographic Method for Determination of the Staling of Bakery Products. Czech J. Food Sci. 33. 6. 507–512.
  67. Song, H.–Liu, J. (2018): GC-O-MS technique and its applications in food flavor analysis. Food Research International. 114. 187–198.
  68. Szalai, L. (1980): A sütőipar távlati fejlesztésével kapcsolatos lisztminőség-kérdések. Tudományos Közlemények. 43–49.
  69. Szeverényi, E.–Házkötő, É. (1965): Gabona- és takarmányféleségek fehérjetartalmának vizsgálatáról. Magyar Országos Söripari Vállalat. Budapest. 213–218.
  70. Szilli, M. (1972): Az amilázok szerepe a sütőipari technológiában és az alfaamiláz aktivitás mérése. Élelmiszervizsgálati Közlemények. 1–2. 51–57.
  71. Tognon, G.–Campagnoli, A.–Pinotti, L.–Dell'Orto, V.–Cheli, F. (2005): Implementation of the electronic nose for the identification of mycotoxins in durum wheat (Triticum durum). Veterinary Research Communications, 29. 2. 391–393.
  72. Tömösközi, S.–Békés, F.–Haraszi, R.–Salgó, A. (2002): Application of Micro Z-arm mixer in wheat research – Effects of protein addition on mixing properties of wheat dough. Periodica Polytechnica Chemical Engineering. 46. 1. 31–38.
  73. Treml, M.–Glover, K.–Krishnan, P.–Harelan, G. (2010): Variability and Relationships Among Mixolab, Mixograph, and Baking Parameters Based on Multienvironment Spring Wheat Trials. Cereal Chem. 87. 6. 574–580. https://doi.org/10.1094/CCHEM-04-10-0068
  74. Uthayakumaran, S.–Tömösközi, S.–Tatham, A.–Savage, A.–Gianibelli, M.–Stoddard, F.–Békés, F. (2001): Effects of gliadin fractions on functional properties of wheat dough depending on molecular size and hydrophobicity. Cereal Chem. 78. 2. 138–141.
  75. Veraverbeke, W. S.–Delcour, J. A. (2002): Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. Critical Reviews in Food Science and Nutrition, Vol. 42, No. 3, pp. 179–208.
  76. Weipert, D. (1990): The Benefits of Basic Rheometry in Studying Dough Rheology. Cereal Chemistry, Vol. 67, No. 4. pp. 311–317.
  77. Zheng, H.–Morgenstern, M.–Campanella, O.–Larsen, N. (2000): Rheological Properties of Dough During Mechanical Dough Development. Journal of Cereal Science. 32. 293–306. doi:10.1006/jcrs.2000.0339