163-182

The aim of differentiated development in a heterogeneous group of learners (DDHG) is to reduce school leaving without education, using an adaptive and innovative teaching-learning environment and using the most effective strategies, methods and techniques. Furthermore, this strategy helps in developing skills for learners and building cooperation between learners in heterogeneous classes through the use of the special, status-management educational procedure, and finally its strength is to sort the status ranking among learners, and to change the social structure of the class. Our goal is to figure out how to share best practices with teachers. One of the effective ways to renew teaching practice is through further training for teachers. As a trainer of the Logic-based subprogram of the Complex Basic Program (CBP) the author of the paper has experienced how well logic-based and decision-making strategies work in other subjects as well as in mathematics.

Subject Classification: 97D40

70

37

317-326

The purpose of this work is to take a didactic look at a learning situation located at the interface between mathematics and computer science. This situation offers a first approach to the concept of artificial intelligence through the study of a reinforcement learning device. The learning situation, inspired by the Computer Science Unplugged approach, is based on a combinatorial game, along with a device that learns how to play this game. We studied the learning potential when the human players face the machine. After an a priori analysis using the Theory of Didactic Situations (TDS), we conducted a pre-experiment in order to strengthen our hypotheses. In this article, we will focus on the analysis of the didactic variables, the values we have chosen for these variables and their effects on students’ strategies.

Subject Classification: 97D99, 97K99, 97P80

21

21

207-217

This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

Subject Classification: 97D50, 97A30

35

58

347-358

Our paper focuses on empirical research in which we map out the errors in learning fractions. Errors are often logically consistent and rule-based rather than being random. When people face solving an unfamiliar problem, they usually construct rules or strategies in order to solve it (Van Lehn, 1983). These strategies tend to be systematic, often make ‘sense’ to the people who created them but often lead to incorrect solutions (Ben-Zeev, 1996). These mistakes were named rational errors by Ben-Zeev (1996). The research aims to show that when learning fractions, students produce such errors, identified in the literature, and that students who make these kinds of mistakes achieve low results in mathematics tests. The research was done among 5th-grade students.

Subject Classification: 97C10, 97C30, 97C70, 97D60, 97D70, 97F50

21

9

39-50

Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.

Subject Classification: 97-01, 97-03, 97D50

19

9

121-142

The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.

Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20

27

27

31-49

In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.

Subject Classification: 97U20, 08A50

25

40