Search
Search Results
-
Teaching of problem-solving strategies in mathematics in secondary schools
139-164Views:8In the Hungarian mathematics education there is no explicit teaching of problem-solving strategies. The best students can abstract the strategies from the solutions of concrete problems, but for the average students it is not enough. In our article we report about a developmental research. The topic of the research was the explicit teaching of two basic strategies (forward method, backward method). Based on our experiences we state that it is possible to increase the effectivity of students' problemsolving achievement by teaching the problem-solving strategies explicitly. -
"Upperview" algorithm design in teaching computer science in high schools
221-240Views:39In this paper we are going to present a teaching/learning method and suggest a syllabus that help the high school students look at the algorithm design strategies from a so called "upperview": greedy, backtracking, divide and conquer, dynamic programming. The goal of the suggested syllabus is, beyond the presentation of the techniques, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In consensus with the Comenius principle this is essential, if we want to master this field of programming ("To teach means scarcely anything more than to show how things differ from one another in their different purposes, forms, and origins. ... Therefore, he who differentiates well teaches well."). -
Differentiated instruction not only for Mathematics teachers
163-182Views:168The aim of differentiated development in a heterogeneous group of learners (DDHG) is to reduce school leaving without education, using an adaptive and innovative teaching-learning environment and using the most effective strategies, methods and techniques. Furthermore, this strategy helps in developing skills for learners and building cooperation between learners in heterogeneous classes through the use of the special, status-management educational procedure, and finally its strength is to sort the status ranking among learners, and to change the social structure of the class. Our goal is to figure out how to share best practices with teachers. One of the effective ways to renew teaching practice is through further training for teachers. As a trainer of the Logic-based subprogram of the Complex Basic Program (CBP) the author of the paper has experienced how well logic-based and decision-making strategies work in other subjects as well as in mathematics.
Subject Classification: 97D40
-
"Frontier algorithms"
139-152Views:23In this paper we present a new method to compare algorithm design strategies. As in case of frontier towns the cultures blend, the so called "frontier algorithms" are a mixture of different programming techniques like greedy, backtracking, divide and conquer, dynamic programming. In case of some of them the frontier character is hidden, so it has to be discovered. There are algorithms that combine different techniques purposively. Furthermore, determining the programming technique the algorithm is using can be a matter of point of view. The frontier algorithms represent special opportunities to highlight particular characteristics of the algorithm design strategies. According to our experience the frontier algorithms fit best to the revision classes. -
Regula falsi in lower secondary school education II
121-142Views:93The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.
Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20
-
A survey on how students seek information on the internet
153-165Views:10Navigating among the information available on the Internet has become an expectation for the members of the information society we are living in. This especially applies to students of higher education, the intellectuals of the future. It is a general experience that most users make one or two word searches and they don't know about the possibilities offered by various search engines, which can make searches more effective. Given results from abroad we have set up a study among the students of the University of Debrecen (UD) about their use of the Internet, their knowledge of searching strategies and techniques, their perceptions of the effectiveness and efficiency of search engines. This paper reports the results of this study. The results imply that it is imperative that area should be included in the curriculum. -
Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
31-49Views:151In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.
Subject Classification: 97U20, 08A50
-
The single-source shortest paths algorithms and the dynamic programming
25-35Views:31In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies. -
Transition from arithmetic to algebra in primary school education
225-248Views:36The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
Looking back on Pólya’s teaching of problem solving
207-217Views:229This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.
Subject Classification: 97D50, 97A30
-
Analysis of a problem in plane geometry discussed in an 11th grade group study session
181-193Views:27The main aim of this paper is to show those strategies and proof methods we try to teach in secondary maths education through an interesting geometric problem: Find a relation for the sides of a triangle where an angle is the double of another angle. Is the converse also true? Is it possible to generalize the problem? We try to answer these questions while discussing the upcoming difficulties in detail and presenting more possible solutions. Hopefully the paper can be successfully used in study group sessions and problem solving seminars in secondary schools. -
Rational errors in learning fractions among 5th grade students
347-358Views:72Our paper focuses on empirical research in which we map out the errors in learning fractions. Errors are often logically consistent and rule-based rather than being random. When people face solving an unfamiliar problem, they usually construct rules or strategies in order to solve it (Van Lehn, 1983). These strategies tend to be systematic, often make ‘sense’ to the people who created them but often lead to incorrect solutions (Ben-Zeev, 1996). These mistakes were named rational errors by Ben-Zeev (1996). The research aims to show that when learning fractions, students produce such errors, identified in the literature, and that students who make these kinds of mistakes achieve low results in mathematics tests. The research was done among 5th-grade students.
Subject Classification: 97C10, 97C30, 97C70, 97D60, 97D70, 97F50
-
What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
39-50Views:82Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.
Subject Classification: 97-01, 97-03, 97D50
-
Facilitating class attendance to improve student achievements
77-90Views:29Many studies have revealed that attendance is strongly associated with students' achievements, and have proposed different strategies to improve students' attendance. However, there are few studies investigating how to efficiently take students' attendance – the key component to improve students' attendance. Taking attendance manually is inefficient since it will consume part of the limited class time. This paper describes the design and the implementation of an online attendance system that is currently used in classes at West Virginia University and California University of Pennsylvania. Examples of the system are provided online. Implementation codes of the system are shared, which can be used to teach computer science courses such as Web Programming or Client-Server Script Languages. -
Some Remarks on History of Mathematical Problem Solving
51-64Views:33In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles. -
Regula falsi in lower secondary school education
169-194Views:36The aim of this paper is to offer some possible ways of solving word problems in lower secondary school education. Many studies have shown that pupils in lower secondary school education (age 13-14) encounter difficulties with learning algebra. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. By numerical checking methods we mean guess-and-check and trial-anderror. We will give a detailed presentation of the false position method. In our opinion this method is useful in the loweer secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the primary school pupils. We will also show the results of some problem solving activities among 19 grade 8 pupils at our school. We analysed their problem solving strategies and compared our findings with the results of other research works. -
Task reformulation as a practical tool for formation of electronic digest of tasks
1-27Views:35Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article. -
Teaching puzzle-based learning: development of transferable skills
245-268Views:37While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
A Nim like game and a machine that plays it: a learning situation at the interface of mathematics and computer science
317-326Views:119The purpose of this work is to take a didactic look at a learning situation located at the interface between mathematics and computer science. This situation offers a first approach to the concept of artificial intelligence through the study of a reinforcement learning device. The learning situation, inspired by the Computer Science Unplugged approach, is based on a combinatorial game, along with a device that learns how to play this game. We studied the learning potential when the human players face the machine. After an a priori analysis using the Theory of Didactic Situations (TDS), we conducted a pre-experiment in order to strengthen our hypotheses. In this article, we will focus on the analysis of the didactic variables, the values we have chosen for these variables and their effects on students’ strategies.
Subject Classification: 97D99, 97K99, 97P80
-
Why do we complicate the solution of the problem? reflection of Finnish students and teachers on a mathematical summer camp
405-415Views:32This paper deals with reactions and reflections of Finnish secondary school students and teachers on Hungarian mathematics teaching culture. The experiences were collected at a mathematics summer camp in Hungary. -
On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
77-89Views:33The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers. -
The background of students' performance
295-305Views:35The question to which we were seeking was: how can we reveal the students' strategies and mental process by following their work precisely and by finding out what correlation these have with their efficiency. Our aim was to understand the factors behind of students' achievement. We tried to follow up the process of problem solving by looking at the number of wrong turnings.