Search

Published After
Published Before

Search Results

  • The role of representations constructed by students in learning how to solve the transportation problem
    129-148
    Views:
    107

    The purpose of the research presented in this paper was to study the role of concrete and table representations created by students in learning how to solve an optimization problem called the transportation problem. This topic was learned in collaborative groups using table representations suggested by teachers in 2021. In 2022, the researchers decided to enrich the students’ learning environment with concrete objects and urged the students to use them to present the problem to be solved. The students did it successfully and, to be able to record it in their notebooks, they constructed a table representation by themselves without any help from their teacher. After that, they managed to solve the problem by manipulating the objects. At the same time, each step in the solution was presented with changes in the table. The students were assessed before (pre-test) and after collaborative learning (test) in both academic years. The pre-test results were similar, but the test results were better in 2022. Therefore, it can be concluded that using concrete and table representations constructed by students in learning how to solve transportation problems makes collaborative learning more constructivist and more effective than when they use only table representations suggested by their teachers.

    Subject Classification: 97M10, 97M40

  • The use of different representations in teaching algebra, 9 th grade (14-15 years old)
    29-42
    Views:
    32
    Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
    In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability.
  • How do secondary school students from the Kurdistan Region of Iraq understand the concept of function?
    221-244
    Views:
    150

    The study investigates secondary school students' understanding of the concept of function. The paper focuses on three main aspects: students' ability to define the concept of function; students' ability to recognize different representations of function; and students' ability to convert between different representations. A test was developed to assess the three main constructs of the study and administered to 342 students in secondary schools in the Kurdistan Region of Iraq. According to the results, students have diffculties in recognizing different representations of function and conversion between them. Connections between different parts of the test may provide hints on educational challenges of how to appropriately teach functions.

    Subject Classification: 26Bxx, 97D60

  • Cooperative learning in teaching mathematics: the case of addition and subtraction of integers
    117-136
    Views:
    31
    In the course of teaching and learning mathematics, many of the problems are caused by the operations with integers. My paper is a presentation of an experiment by which I tried to make the acquisition of these operations easier through the use of cooperative methods and representations. The experiment was conducted in The Lower-Secondary School of Paptamási from Romania, in the school year 2009-2010. I present the results of the experiment.
  • How the derivative becomes visible: the case of Daniel
    81-97
    Views:
    34
    This paper reports how an advanced 11th-grade student (Daniel) perceived the derivative from a graph of a function at a task-based interview after a short introduction to the derivative. Daniel made very impressive observations using, for example, the steepness and the increase of a graph as well as the slope of a tangent as representations of the derivative. He followed the graphs sequentially and, for example, perceived where the derivative is increasing/decreasing. Gestures were an essential part of his thinking. Daniel's perceptions were reflected against those of a less successful student reported previously [Hähkiöniemi, NOMAD 11, no. 1 (2006)]. Unlike the student of the previous study, Daniel seemed to use the representations transparently and could see the graph as a representation of the derivative.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    37
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.
  • Teaching probability using graph representations
    103-122
    Views:
    32
    The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach.
  • Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
    195-220
    Views:
    26
    Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition.
  • Teaching probability theory by using a web based assessment system together with computer algebra
    81-95
    Views:
    34
    In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA.
  • Why do we complicate the solution of the problem? reflection of Finnish students and teachers on a mathematical summer camp
    405-415
    Views:
    31
    This paper deals with reactions and reflections of Finnish secondary school students and teachers on Hungarian mathematics teaching culture. The experiences were collected at a mathematics summer camp in Hungary.
  • Teaching fractions at elementary level in the light of Hungarian mathematics textbooks in Romania
    149-159
    Views:
    80

    According to the new curriculum in Romania, fractions are introduced in the second grade. The present study analyses Hungarian elementary mathematics textbooks on the topic of fractions focusing on the types of tasks in the textbooks, the significance of representations and the proportion of word problems. Additionally, the paper presents a questionnaire-based research on teachers’ opinion regarding the adequacy and sufficiency of the digital materials and exercises related to fractions in the textbooks.

    Subject Classification: 97F40, 97F80, 97U20, 97U50

  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    44
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Forming the concept of congruence I.
    181-192
    Views:
    9
    Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
    In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
    I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence.
  • 14 to 18-year-old Hungarian high-school students' view of mathematicians appearing in the media - a case study
    183-194
    Views:
    10
    One way to develop positive attitude toward STEM subjects that popular media, including movies and films can be engaged to promote more positive and inclusive STEM images. The movie Hidden numbers offers an opportunity to explore the representations of scholars, especially mathematicians within a biographical drama. Focusing on 5 characters, this article first discusses whether these characters fit into stereotypical scientist image or not. Secondly, we examine how high school students evaluate these characters. We argue that this movie is suitable to promote positive attitude toward STEM subjects.