Search
Search Results
-
Dressed up problems - the danger of picking the inappropriate dress
77-94Views:14Modelling and dressed-up problems play an inevitably unavoidable role in mathematics education. In this study we would like to point out how dangerous is it to dress up mathematical problems. We go back to the principle of De Lange: The problem designer is not only dressing up the problem, but he is the solution designer, as well. We show three examples selected from Hungarian high school textbooks where the intended solution does not solve the problem, because the dressing changes the context and changes the problem itself. -
Freudenthal fantasy on the bus, an American adaptation
133-142Views:61In the 1960’s two mathematicians, Hans Freudenthal in the Netherlands and Tamás Varga in Hungary, had argued that people learn mathematics by being actively involved and investigating realistic mathematical problems. Their method lives on in today’s teaching and learning through the various components of cooperative and active learning, by taking ownership in learning, and learning through student dialogue. The goal is to create a welcoming classroom atmosphere in which play takes the front seat. One such scenario is visiting various (animal) stations at the zoo by bus (illustrated by pictures). Passengers are getting on and off the bus at each station (illustrated by arrows), which is modeled on the open number line. This adapted and modified action research was carried out with 5-yearl-old children in public schools of Staten Island, NY in 2019.
Subject Classification: 97D40, 97F20, 97F30
-
A role of geometry in the frame of competencies attainment
41-55Views:29We discuss aspects of the Education Reform from teaching to educational system. In this context we recognize some problems in recognition of some competencies that students need to achieve and we present how we have developed the measurement method of spatial abilities and problem solving competence. Especially, we investigate how students use spatial visualization abilities in solving various problems in other mathematical course. We have tested how students use their spatial abilities previously developed in geometry courses based on conceptual approach to solve a test based on procedural concept in Mathematical Analysis course. -
Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
251-291Views:7The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden. -
Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
51-67Views:116In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.
Subject Classification: 97D40
-
The shift of contents in prototypical tasks used in education reforms
203-219Views:93The paper discusses the shift of contents in prototypical tasks provoked by the current educational reform in Austria. The paper starts with the educational backboard of the process of changes in particular with the out tting of the students' abilities in different taxonomies and its implementation in the competence models of Mathematics. A methodological didactical point of view on the process is given additionally. Examples out of a specific collection of math problems which arise from the educational reform are integrated and analysed in the context of educational principles and methods. The discussion ends with a short evaluation of the role of traditional approaches to tasks in the ongoing reform. A bundle of tasks as proof that they are still alive is presented finally.
Subject Classification: 97B50, 97D40, 97D50
-
A mathematical and didactical analysis of the concept of orientation
111-130Views:41The development of spatial ability, in particular the development of spatial orientation is one of the aims of mathematics education.
In my work, I examine the concept of orientation, especially concepts of between, left, right, below, above, front, back, clockwise and anticlockwise. I analyze answers given for a simple orientation task prepared for elementary school pupils. I would like to call attention to the difficulties pupils have even in case of solving simple orientation problems.
We have different ways to know more about the crucial points of a concept, especially of the concept of orientation. In this study I bring out one of them. I analyze and make some didactical conclusions about the origin and the axiomatic structure of orientation. -
Algorithmics of the knapsack type tasks
37-71Views:27We propose a new kind of approach of the teaching of knapsack type problems in the classroom. We will remind you the context of the general knapsack-task and we will classify it, including the two most popular task variants: the discrete and the continuous one. Once we briefly present the solving algorithm of the continuous variant, we will focus on the solving of the discrete task, and we will determine the complexity of the algorithms, looking for different optimizing possibilities. All these issues are presented in a useful way for highschool teachers, who are preparing students in order to participate in different programming contests.