Search

Published After
Published Before

Search Results

  • Realizing the problem-solving phases of Pólya in classroom practice
    219-232
    Views:
    295

    When teaching mathematical problem-solving is mentioned, the name of Pólya György inevitably comes to mind. Many problem-solving lessons are planned using Pólya's steps and helping questions, and teachers often rely on his heuristics even if their application happens unconsciously. In this article, we would like to examine how the two phases, Making a plan and Looking back, can be realized in a secondary school mathematics lesson. A case study was designed to observe and analyse a lesson delivered using cooperative work.

    Subject Classification: 97B10, 97C70, 97D40, 97D50

  • CAS-aided visualization in LATEX documents for mathematical education
    1-18
    Views:
    129
    We have been developing KETpic as a macro package of a CAS for drawing fine LATEX-pictures, and we use it efficiently in mathematical education. Printed materials for mathematics classes are prepared under several constraints, such as "without animation", "mass printings", "monochrome", and "without halftone shadings". Because of these constraints, visualization in mathematical education tends to be unsatisfactory. Taking full advantages of LATEX and CAS, KETpic enables us to provide teaching materials with figures which are effective for mathematical education. The effects are summarized as follows:
    (1) The plottings of KETpic are accurate due to CAS, and enable students to deduce mathematical laws.
    (2) KETpic can provide adequate pictures for students' various interest. For example, when some students who understand a matter try to modify it, KETpic can give them appropriate and experimental figures.
    (3) Even though CAS can draw 3D-figures beautifully and automatically, it is expensive for mass printings and the figures are sometimes not easy to understand. Oppositely, 3D-graphics by KETpic are monochrome, but are richly expressive.
    In this paper, we give various examples of LATEX-pictures which we drew by using KETpic. For instance, the picture which is used in order to explain the convergence theorem of Fourier series makes it easier for students to understand the idea that function series converge to another function. Also the picture of skeleton is endowed with clear perspective. KETpic gives us great potential for the teaching of combinatorial mathematics. Through these examples, we claim that KETpic should have great possibilities of rich mathematical expressions under the constraints above mentioned.
  • Mathematical gems of Debrecen old mathematical textbooks from the 16-18th centuries
    73-110
    Views:
    82
    In the Great Library of the Debrecen Reformed College (Hungary) we find a lot of old mathematical textbooks. We present: Arithmetic of Debrecen (1577), Maróthi's Arithmetic (1743), Hatvani's introductio (1757), Karacs's Figurae Geometricae (1788), Segner's Anfangsgründe (1764) and Mayer's Mathematischer Atlas (1745). These old mathematical textbooks let us know facts about real life of the 16-18th centuries, the contemporary level of sciences, learning and teaching methods. They are rich sources of motivation in the teaching of mathematics.
  • Infimum problems derived from the proofs of some generalized Schwarz inequalities
    41-57
    Views:
    174

    We define f(a;b)(r) = ar + b/r for all a, b, r Є R with r > 0. And, for some subsets A of R, we determine FA_+ (a; b) = inf (r Є A_+) f(a,b) (r) ; where A_+ ={r Є A : r > 0}. The above in ma are mainly motivated by the proofs of some recent generalized Schwarz inequalities established by the present authors.

    Subject Classification: I35

  • Development of high school students' geometric thinking with particular emphasis on mathematically talented students
    93-110
    Views:
    136
    We carried out research using Zalman Usiskin's test (1982) and also a modified version of his test to see how the geometric approach of secondary school students (Grades 8-10) specialized in mathematics had changed. We observed two groups of students for several years. Our aim was to find a relation between the change of the mean of the van Hiele level of the students and the structure of the geometry syllabus. We also observed if there was a change in the geometric approach of the students during the summer holidays and if so, in what way it changed.
  • Increasing the popularity and efficiency of distance education by old-new methods
    211-228
    Views:
    150
    In our essay we aim to provide suggestions to develop distance education and we decisively focus on programmed education that is supported by e-learning environment. We both think that the shortage of programmed educational methods is causeless in Hungary's distance education. The widespread usage of info-communication devices and of the Internet makes the programmed educational methods (not as an exclusive method) possible to use in distance education together with e-learning environment. In our work we summarize the possible solutions and at the same time we also provide a case study, as an insight into our e-learning project (called Logical Programming) by Moodle.
  • Reappraising Learning Technologies from the Viewpoint of the Learning of Mathematics
    221-246
    Views:
    142
    Within the context of secondary and tertiary mathematics education, most so-called learning technologies, such as virtual learning environments, bear little relation to the kinds of technologies contemporary learners use in their free time. Thus they appear alien to them and unlikely to stimulate them toward informal learning. By considering learning technologies from the perspective of the learner, through the analysis of case studies and a literature review, this article asserts that the expectation of these media might have been over-romanticised. This leads to the recommendation of five attributes for mathematical learning technologies to be more relevant to contemporary learners' needs: promoting heuristic activities derived from human history; facilitating the shift from instrumentation to instrumentalisation; facilitating learners' construction of conceptual knowledge that promotes procedural knowledge; providing appropriate scaffolding and assessment; and reappraising the curriculum.
  • Fostering engineering freshmen’s shifts of attention by using Matlab LiveScript for solving mathematical tasks
    1-14
    Views:
    223

    We designed an experimental path including a summative assessment phase, where engineering freshmen are involved in solving mathematical tasks by using Matlab LiveScripts. We analyzed the students’ answers to a questionnaire about their perceived impact of the use of Matlab on their way to solve mathematical tasks. The main result is that students show shifts of attention from computations to other aspects of problem solving, moving from an operational to a structural view of mathematics.

    Subject Classification: 97U70, 97H60

  • Group Work at High School According to the Method of Tamás Varga
    167-176
    Views:
    200

    The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.

    Subject Classification: 97D40

  • Correction to Gofen (2013): "Powers which commute or associate as solutions of ODEs?", Teaching Mathematics and Computer Science 11 (2013), 241-254.
    245
    Views:
    119

    In the article "Powers which commute or associate as solutions of ODEs?" by Alexander Gofen (Teaching Mathematics and Computer Science, 2013, 11(2), 241–254. https://doi.org/10.5485/TMCS.2013.0347), there was an error in Conjecture 1 (p. 250), and consequently, in the References (p. 254).

  • Approximated Poncelet configurations
    163-176
    Views:
    129
    In this short note we present the approximate construction of closed Poncelet configurations using the simulation of a mathematical pendulum. Although the idea goes back to the work of Jacobi ([17]), only the use of modern computer technologies assures the success of the construction. We present also some remarks on using such problems in project based university courses and we present a Matlab program able to produce animated Poncelet configurations with given period. In the same spirit we construct Steiner configurations and we give a few teaching oriented remarks on the Poncelet grid theorem.
  • Cooperative learning in teaching mathematics: the case of addition and subtraction of integers
    117-136
    Views:
    104
    In the course of teaching and learning mathematics, many of the problems are caused by the operations with integers. My paper is a presentation of an experiment by which I tried to make the acquisition of these operations easier through the use of cooperative methods and representations. The experiment was conducted in The Lower-Secondary School of Paptamási from Romania, in the school year 2009-2010. I present the results of the experiment.
  • Proof without words
    207
    Views:
    50
    | cos α + sin α | ≤ √2 with equality…
  • A didactic analysis of merge sort
    195-210
    Views:
    132
    Due to technical difficulties, educators teaching merge sort often avoid the analysis of the cost in the general and average cases. Using basic discrete mathematics, elementary real analysis and mathematical induction, we propose a self-contained derivation of bounds αn log_2 n + βn + γ in all cases. Independent of any programming language or pseudo-code, supported by intuitive figures, it is suitable for informatics students interested in the analysis of algorithms. It is also a good exercise in showing that induction allows us to actually discover constants, instead of simply checking them a posteriori.
  • How the derivative becomes visible: the case of Daniel
    81-97
    Views:
    128
    This paper reports how an advanced 11th-grade student (Daniel) perceived the derivative from a graph of a function at a task-based interview after a short introduction to the derivative. Daniel made very impressive observations using, for example, the steepness and the increase of a graph as well as the slope of a tangent as representations of the derivative. He followed the graphs sequentially and, for example, perceived where the derivative is increasing/decreasing. Gestures were an essential part of his thinking. Daniel's perceptions were reflected against those of a less successful student reported previously [Hähkiöniemi, NOMAD 11, no. 1 (2006)]. Unlike the student of the previous study, Daniel seemed to use the representations transparently and could see the graph as a representation of the derivative.
  • The mathematics textbook as an aid to differentiation: a first Hungarian example
    35-53
    Views:
    92
    Differentiation is a way of teaching where each student is taught according to his/her personal needs. This technique is not widely used in Hungary yet, although this would be necessary due to the introduction of the two-level final examination and to a growing concern for equal opportunities and integrated teaching. One of the most significant aids to differentiation is an appropriate textbook, and that is why a group of professionals wrote a set of textbooks that supports this technique. The paper examines the requirements for a differentiated textbook, and the extent to which the textbook in question meets them.
  • Potential, actual and practical variations for teaching functions: cases study in China and France
    157-166
    Views:
    178

    This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.

    Subject Classification: 97-06

  • Cultivating algorithmic thinking: an important issue for both technical and HUMAN sciences
    107-116
    Views:
    128
    Algorithmic thinking is a valuable skill that all people should master. In this paper we propose a one-semester, algorithm-oriented computer science course for human science students. According to our experience such an initiative could succeed only if the next recipe is followed: interesting and practical content + exciting didactical methods + minimal programming. More explicitly, we suggest: (1) A special, simple, minimal, pseudo-code like imperative programming language that integrates a graphic library. (2) Interesting, practical and problem-oriented content with philosophical implications. (3) Exciting, human science related didactical methods including art-based, inter-cultural elements.
  • Our digital education habits in the light of their environmental impact: the role of green computing in education
    69-86
    Views:
    241

    With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.

    Subject Classification: 97P99, 94-06, 94-02

  • Teaching probability theory by using a web based assessment system together with computer algebra
    81-95
    Views:
    125
    In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA.
  • Why is the gamma function so as it is?
    43-53
    Views:
    105
    This is a historical note on the gamma function Γ. The question is, why is Γ(n) for naturals n equal to (n−1)! and not equal to n! (the factorial function n! = 1·2 · · · n) ? Was A. M. Legendre responsible for this transformation, or was it L. Euler? And, who was the first who gave a representation of the so called Euler gamma function?
  • A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
    133-161
    Views:
    265

    We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.

    Subject Classification: 97B40, 97C70

  • Some thoughts concerning power sums
    303-308
    Views:
    83
    In this note we present an elementary way to derive directly closed-form expressions for power sums. Applying this method, we deduce some general results on power sums with arbitrary exponents. Finally, we give an outlook on higher mathematical connections between power sums, Stirling and Bernoulli numbers.
  • Katalin Juhász (1952-2012)
    1-2
    Views:
    80
    Katalin Juhász was born in 1952, in Tarnaméra (Hungary), where she also completed her primary school studies. She finished Erzsébet Szilágyi Highschool, Eger, in 1971 and she graduated in mathematics from Lajos Kossuth University (KLTE), Debrecen, in 1976. That year she married a physicist and together they brought up their son.
  • Probabilistic thinking, characteristic features
    13-36
    Views:
    106
    This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think.
Database Logos

Keywords