Search
Search Results
-
Recalling calculus knowledge
55-70Views:104The main purpose of educational system is not only that the students perform well at the exam, but to remember the learnt material to some degree some time after the learning. This paper investigates students' retained knowledge, focusing mainly on topics concerning derivatives and differentiation, and examines the effect of re-learning in a short period of time. Results indicate that retained knowledge should be taken into consideration in instructional design and curriculum planning for the sequencing courses. -
Proof step analysis for proof tutoring - a learning approach to granularity
325-343Views:164We present a proof step diagnosis module based on the mathematical assistant system Ωmega. The task of this module is to evaluate proof steps as typically uttered by students in tutoring sessions on mathematical proofs. In particular, we categorise the step size of proof steps performed by the student, in order to recognise if they are appropriate with respect to the student model. We propose an approach which builds on reconstructions of the proof in question via automated proof search using a cognitively motivated proof calculus. Our approach employs learning techniques and incorporates a student model, and our diagnosis module can be adjusted to different domains and users. We present a first evaluation based on empirical data. -
Using the computer to visualise graph-oriented problems
15-32Views:130The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant. -
Mobile devices in Hungarian university statistical education
19-48Views:176The methodological renewal of university statistics education has been continuous for the last 30 years. During this time, the involvement of technology tools in learning statistics played an important role. In the Introduction, we emphasize the importance of using technological tools in learning statistics, also referring to international research. After that, we firstly examine the methodological development of university statistical education over the past three decades. To do this, we analyze the writings of statistics teachers teaching at various universities in the country. To assess the use of innovative tools, in the second half of the study, we briefly present an online questionnaire survey of students in tertiary economics and an interview survey conducted with statistics teachers.
Subject Classification: 97-01, 97U70, 87K80
-
Design guidelines for dynamic mathematics worksheets
311-323Views:193In a Math and Science Partnership project in Florida, middle school teachers are using the dynamic mathematics software GeoGebra to create interactive online worksheets for mathematics learning. Formative evaluation of these materials based on design principles of multimedia learning has lead to a list of specific design guidelines for such dynamic worksheets that we present in this article. These design guidelines can give advice both for the creation of new dynamic worksheets and the evaluation of existing material on the Internet. -
A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
133-161Views:280We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.
Subject Classification: 97B40, 97C70
-
Game theory for managers and mechanical manager students
73-91Views:139In this article we describe the second part of a case study, in which 48 Mechanical Management students were involved. The participants of the case study were MSc level students at Szent István University, Gödöllő.
In the case study we looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning.
Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficiency, furthermore their achievement in the subject of Engineering and Economic Mathematics.
Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used.
During the semester four topics have been discussed: linear programming, graph theory, game theory and differential equations. In this article I will describe the lesson preparations, the help for examinations and the students' achievement on game theory. -
Analysis of the affective factors of learning mathematics among teacher trainees
225-254Views:134The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training. -
An interactive animation for learning sorting algorithms: How students reduced the number of comparisons in a sorting algorithm by playing a didactic game
45-62Views:176Learning programming and understanding algorithms is one of the hardest tasks for novice computer science students. One of the basic algorithms they learn during the introductory programming and algorithms courses are the sorting algorithms. Students like learning these and other algorithms by animations and didactic games, however, these animations are not educationally useful in every case. In this article, we present our educational sorting game, which can be used to introduce the topic of sorting algorithms. The didactic game can be used later too, as a demonstrative tool for explaining the more efficient, quicksort algorithm. We conducted a pedagogical experiment, in which we examined the process of development of sorting algorithms by students while they used the mentioned didactic game. The results showed that students were able to create an algorithm to solve the sorting problem, and they improved its effectiveness by reducing the number of comparisons in the algorithm. They were also able to understand the importance of the efficiency of algorithms when we demonstrated them the quicksort algorithm using the same tool after the experiment. -
Zbigniew Michalewicz - Matthew Michalewicz: Puzzle Based Learning: An introduction to critical thinking, mathematics, and problem solving. Hybrid Publishers Melbourne 2008 (Book review)
415-420Views:250Based on their experiences with engineering, mathematics, computer science, business students concerning the puzzle based learning in different countries the authors summarize their main problem solving teaching ideas. With help of interesting, motivating, nice problems they analyze the main mathematical principles and problem types. The review gives an overview about the main ideas, results of an interesting book. -
Integrating Didactic Games in Higher Education: Benefits and Challenges
1-15Views:821In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.
Subject Classification: 97C70, 97D20, 97D40, 97U70
-
Efficient language teaching software in a multimedia context
361-374Views:141In this article I deal with the efficiency of multimedia teaching programs, analyzing possibilities for their improvement in the field of language teaching. This research has been carried out with the use of the latest technologies, language teaching software, internet based language teaching applications, digital dictionaries, online content, and the latest results from the field of computational linguistics. The goal of my research is to create a general model that serves and supports various kinds of approaches to improving efficiency; I cannot attempt to present a complete, detailed analytical review due to the complexity and size of this topic. However, my opinion is that by considering and understanding the theoretical aspects of the subject, and supported by certain important ideas, we will be able to achieve remarkable improvements in the field of learning efficiency and knowledge retention in the language teaching and learning process that might lead to outstanding results. -
Teaching of old historical mathematics problems with ICT tools
13-24Views:192The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way. -
WMI2: interactive mathematics on the web
393-405Views:135After 5 years of experiments and feedback we decided to continue the software development on WebMathematics Interactive, a web-based e-learning tool, rewriting it from scratch. The demonstration version of WebMathematics Interactive 2 (WMI2) has been shown to the expert audience on the CADGME conference. In this article we summarize the development goals and results. -
Mathematics teachers' reasons to use (or not) intentional errors
263-282Views:215Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes. -
Teaching Gröbner bases
57-76Views:149In this article we offer a demonstration of how the StudentGroebner package, a didactic oriented Maple package for Gröbner basis theory, could assist the teaching/learning process. Our approach is practical. Instead of expounding on deep didactic theory we simply give examples on how we imagine experimental learning in classroom. The educational goal is to prepare the introduction of two sophisticated algorithms, the division algorithm and Buchberger's algorithm, by gathering preliminary knowledge about them. -
From iteration to one - dimensional discrete dynamical systems using CAS
271-296Views:89In our paper we present the basic didactical framework and approaches of a course on one-dimensional discrete dynamical systems made with the help of Computer Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First we review some didactical principles of teaching mathematics in general and write about the advantages of the modularization for CAS in referring to the constructivistic view of learning. Then we deal with our own development, a CAS-based collection of programs for teaching Newton's method for the calculation of roots of a real function. Included is the discussion of domains of attraction and chaotic behaviour of the iterations. We summarize our teaching experiences using CAS. -
Comparative survey on pupils' beliefs of mathematics teaching in Finland and Ukraine
13-33Views:88The focus of this comparative survey was the following research question: What are the differences and similarities in pupils' beliefs in mathematics between Finland and Ukraine? Data were gathered with the help of a questionnaire. The questionnaire consists of 32 structured statements about mathematics teaching for which the pupils were asked to rate their beliefs on a 5-step scale. The Finnish sample comprised 255 pupils, and the Ukrainian sample 200 pupils. Our data has been gathered with a non-probabilistic convenience sampling.
The main results of our survey are, as follows: Generally, pupils' beliefs of mathematics teaching and learning in Finland and Ukraine are rather far from similar. An investigation of the differences between pupils' answers across the two countries also showed beliefs that are characteristic for each country. For pupils in Finland, the characteristic beliefs seem to be, as follows: the value of strict discipline, working in small groups, and the idea that all understand. For pupils in Ukraine, the most characteristic might be the following beliefs: the use of learning games, the emphases of mathematical concepts, and teachers' explanations. -
Challenges that a teacher-researcher faces during an action research – a case study
89-99Views:208This paper explores the dual role of the teacher-researcher in a four-year action research project focused on problem-based learning in mathematics. It highlights the challenges faced during the phases of planning, implementation, analysis, and reflection. Drawing on insights from the author’s experiences and observations based on both qualitative and quantitative data collection methods, the study identifies distinct challenges linked to the dual role, like differing design goals or subjective-objective voices. The author also proposes solutions to the identified challenges, such as collaboration with university experts and using reflective practices. Furthermore, the research underscores the beneficial impact of action research on enhancing teachers’ awareness and bridging the theory-practice gap, calling for further studies in this area.
Subject Classification: 97D99
-
Teaching puzzle-based learning: development of transferable skills
245-268Views:291While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:134In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Problem-solving in mathematics with the help of computers
405-422Views:90One of the most important tasks of the didactics of mathematics is the describing of the process of problem-solving activity and problem-solving thinking. The psychological theories concerning the problem-solving thinking leave the special demand of school subjects out of consideration, and search for connections of universal validity. In this article we attempt to connect an abstract theory of psychology concerning problem-solving thinking and a more practical conception of the problem-solving activity of mathematics, which is based on Polya's idea. In this way we can get a structure of problem-solving, which has scientific bases and at the same time it is useful in computer aided learning. Our result was developed and tested in Hungary so this is suitable especially for the Hungarian conditions of mathematics teaching. -
Cooperative learning in teaching mathematics: the case of addition and subtraction of integers
117-136Views:118In the course of teaching and learning mathematics, many of the problems are caused by the operations with integers. My paper is a presentation of an experiment by which I tried to make the acquisition of these operations easier through the use of cooperative methods and representations. The experiment was conducted in The Lower-Secondary School of Paptamási from Romania, in the school year 2009-2010. I present the results of the experiment. -
CALIBRATE and CAS/DGS resources
267-279Views:104The CALIBRATE project was initiated by the EU with the goal of expanding the use of ICT in education by increasing the amount of available learning resources via resource exchange. Although CAS/DGS can be used to easily create high quality learning resources which are also easily adaptable across national boundaries, such resources are difficult to find at CALIBRATE portals. We believe that this is due to CAS/DGS still being rather exotic to most of the people as well as with the common problem of finding existing appropriate resources. A possible solution is for CALIBRATE portals to properly equip existing and forthcoming CAS/DGS resources with suitable metadata and to provide some integration with CAS/DGS tools, enabling both beginners and power users to create and exchange CAS/DGS resources. -
Metacognition – necessities and possibilities in teaching and learning mathematics
69-87Views:193This article focuses on the design of mathematics lessons as well as on the research in mathematics didactics from the perspective that metacognition is necessary and possible.
Humans are able to self-reflect on their thoughts and actions. They are able to make themselves the subject of their thoughts and reflections. In particular, it is possible to become aware of one’s own cognition, which means the way in which one thinks about something, and thus regulate and control it. This is what the term metacognition, thinking about one’s own thinking, stands for.
Human thinking tends to biases and faults. Both are often caused by fast thinking. Certain biases occur in mathematical thinking. Overall, this makes it necessary to think slow and to reflect on one’s own thinking in a targeted manner.
The cognitive processes of thinking, learning and understanding in mathematics become more effective and successful when they are supplemented and extended by metacognitive processes. However, it depends on a specific design of the mathematics lessons and the corresponding tasks in mathematics.Subject Classification: 97C30, 97C70, 97D40, 97D50, 97D70