Search

Published After
Published Before

Search Results

  • The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
    201-211
    Views:
    34
    It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
    Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
    We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess.
  • Mathematics in Good Will Hunting II: problems from the students perspective
    3-19
    Views:
    20
    This is the second part of a three paper long series exploring the role of mathematicians and of the mathematical content occurring in popular media. In particular we analyze the drama film Good Will Hunting. Here we investigate the mathematical content of the movie by considering the problems appearing in it. We examine how a mathematician or a mathematics student would solve these problems. Moreover, we review how these problems could be integrated into the higher education of Hungary.
  • Artworks as illustrations in Hungarian high school Mathematics textbooks
    103-117
    Views:
    68

    Three different series of Hungarian Mathematics textbooks used in grade 9-12 education for the past 30 years have been analysed in this research. Our aim is to show and evaluate how the visual arts have been connected to mathematical ideas in these textbooks. We have applied the six dimensions of evaluation, which have recently been introduced in (Diego-Mantec on, Blanco, Búa Ares, & González Sequeiros, 2019) to categorise the illustrations of the three different series. We show examples for each dimension from the textbooks, and we find that even if the number of artistic illustrations in these coursebooks have significantly increased, in most cases these sporadic examples are not closely related to the mathematical context, mainly used for ornamental purposes to decorate the core text. Based on this classification we conclude that the number of artistic illustrations with underlying math concepts making students' participation more active could and should be significantly increased.

    Subject Classification: 97U20

  • Maximum and minimum problems in secondary school education
    81-98
    Views:
    31
    The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems.
  • Some logical issues in discrete mathematics and algorithmic thinking
    243-258
    Views:
    98

    The role of logic in mathematics education has been widely discussed from the seventies and eighties during the “modern maths period” till now, and remains still a rather controversial issue in the international community. Nevertheless, the relevance of discrete mathematics and algorithmic thinking for the development of heuristic and logical competences is both one of the main points of the program of Tamás Varga, and of some didactic teams in France. In this paper, we first present the semantic perspective in mathematics education and the role of logic in the Hungarian tradition. Then, we present insights on the role of research problems in the French tradition. Finely, we raise some didactical issues in algorithmic thinking at the interface of mathematics and computer science.

    Subject Classification: 97E30

  • MRP tasks, critical thinking and intrinsic motivation to proving
    149-168
    Views:
    27
    The lack of students' need for proof is often discussed. This is an important topic, on which quite a few others have written ([26], [27], [28], [17], [8]). Nevertheless, there is limited research knowledge about how teacher can participate in process of raising of students' intrinsic motivation to proving. In this article, we discuss relationships between intrinsic motivation to proving, critical thinking and special activity – engaging with so-called MRP tasks. We present here results of a research carried out by author in two elementary schools (21 classes, grade 5-9) in Ruzomberok, Slovakia. We identified the interesting relationship between students' dealing with MRP tasks and increasing of their intrinsic motivation to proving.
  • Analysis of the affective factors of learning mathematics among teacher trainees
    225-254
    Views:
    37
    The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
    The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
    In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training.
  • Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
    51-67
    Views:
    116

    In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.

    Subject Classification: 97D40

  • The investigation of students' skills in the process of function concept creation
    249-266
    Views:
    23
    Function is a basic concept of mathematics, in particular, mathematical analysis. After an analysis of the function concept development process, I propose a model of rule following and rule recognition skills development that combines features of the van Hiele levels and the levels of language about function [11]. Using this model I investigate students' rule following and rule recognition skills from the viewpoint of the preparation for the function concept of sixth grade students (12-13 years old) in the Ukrainian and Hungarian education system.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 20 - January 22, 2012, Levoča, Slovakia
    205-230
    Views:
    27
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Levoca, Slovakia from the 20th to the 22th of January, 2012. The 66 participants – including 54 lecturers and 25 PhD students – came from 6 countries, 20 cities and represented 33 institutions of higher and secondary education. The abstract of the talks and the posters and also the list of participants are presented in this report.
  • Verification of human-level proof steps in mathematics education
    345-362
    Views:
    11
    Automated mathematics tutorial systems need support from a reasoning module which can verify the correctness of students' contributions. However, current systems typically do not reason at a level similar to the student's reasoning level, and do not fully account for underspecified or ambiguous inputs. We present a domain-independent method for automatically verifying correct proof steps and detecting standard reasoning errors. We use a depth limited BFS proof search to determine and maintain multiple possible interpretations consistent with the given proof step, we are able to resolve or otherwise propagate underspecification and ambiguity which occurs due to unrestricted user input. Our approach has been implemented in ΩmegaCoRe.
  • Differentiated instruction not only for Mathematics teachers
    163-182
    Views:
    168

    The aim of differentiated development in a heterogeneous group of learners (DDHG) is to reduce school leaving without education, using an adaptive and innovative teaching-learning environment and using the most effective strategies, methods and techniques. Furthermore, this strategy helps in developing skills for learners and building cooperation between learners in heterogeneous classes through the use of the special, status-management educational procedure, and finally its strength is to sort the status ranking among learners, and to change the social structure of the class. Our goal is to figure out how to share best practices with teachers. One of the effective ways to renew teaching practice is through further training for teachers. As a trainer of the Logic-based subprogram of the Complex Basic Program (CBP) the author of the paper has experienced how well logic-based and decision-making strategies work in other subjects as well as in mathematics.

    Subject Classification: 97D40

  • Teaching student teachers: various components of a complex task
    55-72
    Views:
    26
    In this paper we summarize various aspects of teacher training and teaching student teachers (mainly concerning teachers of upper secondary school and High school). We stress several hints and recommendations to better achieve the obviously important aim: they should learn doing, understanding and teaching mathematics!
    Of course, our view is particularly influenced by European traditions, but we think most of them equally apply to teacher training and teaching student teachers elsewhere. Neither is the paper meant to give an all sided overview about the problem field of teacher education as a whole, nor does it contain provocative, completely new ideas. We just want to describe our view of some aspects, based primarily on our personal experience in the mentioned field.
  • The tradition of problem-posing in Hungarian mathematics teaching
    233-254
    Views:
    181

    Based on the literature, Pólya was influential in problem-posing research. The present paper draws attention to a book written with Pólya's collaboration, which has not yet received sufficient emphasis in the problem-posing literature. On the other hand, Pólya's impact on mathematics education in Hungary has been significant, including the problem-posing paradigm. Two works, published only in Hungarian, that rely heavily on problem-posing are highlighted. Furthermore, it is presented how problem-posing appeared in the Hungarian Complex Mathematics Teaching Experiment (1962-78) led by Tamás Varga.

    Subject Classification: 97D50

  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
    109-128
    Views:
    12
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
    The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education.
  • Building a virtual framework to exploit multidisciplinary project workshops – peaks & pits
    147-164
    Views:
    14
    Multidisciplinary project work in connection to industry is highly favoured at University education, since it prepares students to envision their spectrum of profession, to be able to participate in production projects in co-operation with partners out of campus, and learn to communicate between disciplines. An effctive combination presumes selection of right partners, set-up of proper virtual platform to bridge time, space, and diffrences in working styles. The set-up process requires several phases of design-based research proofing the melding process to produce a productive workshop that is sustainable. The paper describes the review of literature, the platform and set-up established, a first phase in bridging Art and Computer Science through the description of MOMELTE project, a critical evaluation in order to learn from mistakes, and a new list of design principles to improve the next phase of the workshop process.
  • Software engineering education in cooperation with industrial partners
    133-148
    Views:
    26
    This paper presents our experiences on teaching software engineering in teams which are organized around different R+D projects. These long-running, innovative projects are carried out in cooperation with industrial partners, and are supported by student exchange. While MSc and PhD students work together with faculty staff members on the projects in an industrial-like environment, the students develop skills that would be otherwise very hard for them to obtain. The methodological contributions of the paper are illustrated by, and substantiated with, the description of a concrete software engineering project.
  • Report on "English Language Section of Varga Tamás Days": annual meeting, 11–12 November, 2005, Budapest, Hungary
    217-223
    Views:
    36
    The Department of Mathematics Education at Teacher Training Institute of Eötvös University organised the 5th English Language Section as a part of Varga Tamás Methodical Days. We discuss the activities based on the authors' abstracts.
  • Teaching correlation and regression in three European countries
    161-183
    Views:
    73

    In this article, we compare the presence of correlation and regression analysis in secondary education of Ireland, the Netherlands and Luxembourg, through the analysis of final-exam tasks and curricula based on the Anthropological Theory of Didactics (ATD). It points out that the same topic can appear in different ways and extent in curricula, even if the mathematics teaching goals are similar. This article is a kind of introduction to the research that explores the possibilities for the appearance of these concepts in the Hungarian mathematics education. Therefore, in the second part of the article, Hungarian curricular goals are included, and it is shown which methodology of the three studied countries has the greatest curricular basis in Hungary.

    Subject Classification: 97xxx

  • What does ICT help and does not help?
    33-49
    Views:
    114

    Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
    Bruner's too.
    At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
    I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
    In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
    I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.

    Subject Classification: 97U70

  • Teaching sorting in ICT
    101-117
    Views:
    30
    This article is aimed at considering how an algorithmic problem – more precisely a sorting problem – can be used in an informatics class in primary and secondary education to make students mobilize the largest possible amount of their intellectual skills in the problem solving process. We will be outlining a method which essentially forces students to utilize their mathematical knowledge besides algorithmization in order to provide an efficient solution. What is more, they are expected to use efficiently a tool that has so far not been associated with creative thinking. Sorting is meant to be just an example, through which our thoughts can easily be demonstrated, but – of course the method of education outlined can be linked to several other algorithmic problems, as well.
  • A proposal for an IOI Syllabus
    193-216
    Views:
    55
    The International Olympiad in Informatics (IOI) is the premier competition in computing science for secondary education. The competition problems are algorithmic in nature, but the IOI Regulations do not clearly define the scope of the competition. The international olympiads in physics, chemistry, and biology do have an official syllabus, whereas the International Mathematical Olympiad has made the deliberate decision not to have an official syllabus. We argue that the benefits of having an official IOI Syllabus outweigh the disadvantages. Guided by a set of general principles we present a proposal for an IOI Syllabus, divided into four main areas: mathematics, computing science, software engineering, and computer literacy.
  • Live & Learn: When a wrong program works
    195-208
    Views:
    26
    In this paper an interesting and surprising case study of my programming education practice is presented. This case underlines the importance of methods, standards and rules of thumb of the programming process. These elements of the programming technology can be taught well in education and they can guarantee the quality of the implemented programs. However the case described in this paper brings an anomaly when a programming standard is violated during the programming process and, although it should imply that the implemented program code works badly, the program works perfectly. This anomaly is caused by a typical implementation problem: the boundary and rules of the machine representation of numbers. This anomaly is going to be analyzed and the appropriate conclusions of our case study will be deducted.
  • Bemerkungen zur Prototypentheorie – Begriffs - und Konzeptbildung
    365-389
    Views:
    25
    Psychological theories of prototypes are put forward by mathematical modelling. Some didactical consequences are discussed on the background of this analysis. By the help of an example (classification of convex quadrangles) hints are given for didactical interpretations of actual models of cognitive psychology dealing with problems of constructing prototypes.
  • Online tests in Comprehensive Exams – during and after the pandemic
    77-93
    Views:
    79

    The Covid-19 pandemic accelerated the development of electronic (e-learning) assessment methods and forced their use worldwide. Many instructors and students had to familiarize themselves with the form of distance education. During and since Covid-19 in Hungary, at the Faculty of Engineering of the University of Debrecen, the written part of the Comprehensive Exam in Mathematics is organized in a computer lab of the university using an online test. Our goal is that the results of the tests may be as reliable as possible in terms of measuring the students’ knowledge, and thus the grades given based on the test results would be realistic. In this paper, we show the analysis of a sample written exam and compare the real exam results of students who were prepared for the comprehensive exam during Covid-19 and who have participated in face-to-face education since then. The tools provided by the Moodle system necessary for comparison are also presented.

    Subject Classification: 97D40, 97D70, 97U50