Search
Search Results
-
Nutrient deficiency and effects of various nutrition technologies on crop health
109-113Views:295The impacts of climate change on crop production are increasingly noticeable. Extreme weather conditions – such as devastating droughts, which occur more often – have serious effects on crop conditions, thus damaging their defence ability against pathogens and pests. Therefore, in order to achieve high-quality and high yielding crops, it is urgent to elaborate new technologies that improve general condition of crops and prevent development of nutrient diseases. Those crops which suffer from the lack of certain nutrients are more sensitive and their tolerance against diseases are decreased. Nitrogen – as the most influencing macronutrient in yield – is also essential in maintaining crop health. Nevertheless, due to the complicated processes in soil (such as leaching, denitrification), the utilization of nitrogen is not nearly complete, therefore nitrogen stabilizers may be needed to maximize this factor. The use of these stabilizers can be promising where plants with high nitrogen content are grown, although further experiments are needed in which impacts of nitrogen stabilizers on crop protection aspects are examined as well, since there is a close correlation between exaggerated nitrogen fertilizing and sensitivity to pests. During my research I am going to examine the combined effect of foliar fertilizer and nitrogen stabilizer on crop health. Furthermore, my goal is to find clear correlation between pathogens and the different technological variants of nutrition.
-
Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype
399-410Views:419Power-to-gas (P2G) is referred to technologies that convert carbon dioxide into methane. Both bio- and chemical catalysts may be used for conversion purposes. One of the most disruptive biotechnologies was developed by the University of Chicago (IL) (publication number: EP2661511B1), using a robust, highly selective, patented strain of Archaea. Electrochaea GmbH has developed an innovative bench-scale P2G prototype unit, which uses this highly efficient Archaea strain, specialized components and specifically developed control strategies. The structure and the components of the prototype are equivalent with the functional parts of the currently largest commercial scale biomethanation BioCat plant located in Avedøre, Denmark (www.biocat-project.com). Power-to-Gas Hungary Kft. has committed to further develop this innovative technology. The first steps of this development have been taken by operating the benchscale unit and analyzing the data of the operating periods.
The prototype is operated based on weekly campaigns. During continuous operation, H2O is generated as a by-product of methane. Therefore, approximately 200 ml of biocatalyst is discharged each day and concentrated media containing macro and micronutrients are injected into the reactor to maintain media composition. The laboratory staff records all gas composition data each morning. The gas composition is measured every 12 minutes by an Awite AwiFlex Cool+ gas analyzer. Within this article, we analyze the collected datasets containing more than 12 000 records and present the first practical experiences of the operations of the innovative power-to-gas bench-scale prototype.
The analysis of the collected gas composition data of the product gas already provides important data for modelling the commercial-scaled processes. The average value of VVD was about 40 l/l/d in the period under review. Further increase of the methane content can be achieved by introduction of higher mixing energy and by increasing pressure levels in the bioreactor (as demonstrated in the BioCat plant – data not shown here) – both of which are strategies envisioned for the commercial plant. In routine activities (turn on, shut down, continuous operation) we could verify the high robustness of the biocatalyst and the base connection between the registered datasets and performed test results.
-
Effect of Storage on Fruitquality of Apricot (Prunus Armeniaca)
164-169Views:121The quality of a product is determined by numerous characteristics. As quality characteristics are polygenic, they cannot be improved easily. Moreover, there often is a negative correlation between the different parameters in the case of apricot. The firmness of fruits decreases with increasing size. The year effect also has a great influence on the expression of the potential quality of the given cultivar.
Our examinations were carried out in 2004 at Boldogkőváralja, in the cold storage plant of the Northcot Ltd. We monitored the development of fruits from fructification until harvest, and also the quality changes during storage. 100 fruits were observed from each cultivar directly after harvest. We measured height, width, weight, firmness, dry matter content and seed weight. From each cultivar, 100 fruits were stored, of which 25 fruits were observed each week. The value and the dynamics of the changes in the parameters compared to the values at harvest varied greatly for the different cultivars. Strong correlations between the parameters have not been found within one cultivar either. The heavier fruits did not lose more weight, either in absolute value or relatively, than the lighter fruits. The increase in the firmness of fruits was not accompanied with a desirable decrease in the dry matter content. -
Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
49-53Views:214The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.
The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.
-
Effects of combined nutrient supply treatments on some physiological parameters of autumn wheat
241-251Views:153The Fleischmann Rudolf Research Institute in Kompolt is not only famous for plant breeding but the institute also surveys the effects of different nutrient supply methods since 1918. In 2017, we joined this research supported by EFOP 3.6.1 project. Our aim was to investigate photochemical processes – which is one of the most determinant in case of yield – of crops by in vivo field measurements. We measured the chlorophyll content of leaves using Minolta SPAD 502. We used miniPAM fluorometer to determine actual photochemical efficiency and non-photochemical quenching of PSII during natural light conditions and also to evaluate the pigment (chlorophylls and carotenoids) and water content of leaves we applied field spectrophotometer (ASD FieldSpecPro 3). We utilized these methods by various treatments (1. treatment with soil bacteria + head and base fertilizer; 2. treated by only head fertilizer; 3. treated by only base-fertilizer) in field experiment of autumn wheat (4.1–2.43–1.19 ha) in June, 2017. The difference between treatments was clearly detectable. In the case of the first treatment, physiological processes were more intense and the ripening occurred earlier. The obtained yield was the highest in the case of the area treated by soil bacterial. Based on the results, the first treatment can be recommended in practice.
-
The effect of long-term fertilization on the 0.01 M CaCl2 extractable nutrient content of a meadow soil
73-79Views:104During my research, I studied the 0.01 M CaCl2 extractable NO3--N, NH4+-N, Norg, P and K contents of the soil samples originated from a long term fertilisation trial in the experimental site Hajdúböszörmény. Relationships among the soil nutrient contents, the agronomic nutrient balances of the 2009 year, and fertilization were studied.
From the results of the study it was concluded as follows:
– Fertilization significantly increased the CaCl2 extractable NO3--N, NH4+-N, and K contents of soil.
– Norg fraction increased as a function of the increasing yield. Hence, it can be assumed that the greater the produced yield, the more the stubble and root residues remain on the arable land. These organic residues can result significant increase in the Norg content of soils.
– The CaCl2 extractable P and K contents were compared with the calculated P and K limit values. According to these, the experimental soil has a good phosphorus and lower potassium supply capacity. These results are in accordance with the results of the conventional Hungarian fertilization recommendation system.
– It can be stated that the 0.01 M CaCl2 is able to determine not just inorganic N forms but Norg fraction as well that characterize the easily mineralizable nitrogen reserves. The results proved that AL-P and -K (ammonium lactate acetic acid, traditional Hungarian extractant) are in good agreement with the P and K reserves, but it is important from the aspect of environmental protection and plant nutrition to measure the easily soluble and exchangeable K-, and P-contents of soil. 0.01 M CaCl2 method is recommended for this. -
Effects of different groundcover matters on nutrient availability in an integrated apple orchard in Eastern-Hungary
21-25Views:115The aim of our study is to examine the effects of different groundcover methods on nutrient availability and uptake of apple orchard. The
experiment was carried out at the orchard of TEDEJ Rt. at Hajdúnánás-Tedej, in Eastern Hungary. The orchard was set up on lowland chernozem soil in the Nyírség region. It was established in the autumn of 1999, using Idared cultivar grafted on MM106 rootstocks at a spacing of 3.8 x 1.1 m.
The applied treatments were divided into two groups according to origins and effects. On the one hand, different livestock manures (cow,
horse and pig), on the other hand different mulch-matters (straw, pine bark mulch, black foil) were used. The different manures and mulches
were applied on the surface to test the effectiveness of these materials.
The effectiveness of manure treatments was higher than the other treatments on AL soluble P content of soil. Mostly the manure treatments
increased the AL soluble K of soil. Our all treatments increased 0.01 M CaCl2 soluble NO3 - -N content of the examined soil layers. The effect
of manure treatments was the highest. From the results it was evident that the amount of easily soluble organic nitrogen fraction distributed
more homogeneously than the other mineral N fractions examined.
Our results can be summarized as follows:
1. Our results pointed out that the used ground covering matters divided into several categories regarding its effect.
2. The available N, P and K contents of soil were mostly increased by applying manures.
3. The effectiveness of straw, mulch and mostly black foil was lower.
4. Differences were found between nutrient supplying treatments and the treatments which did not supply nutrients. -
Water relations composition among Egyptian cotton genotypes under water deficit
5-15Views:199Background: water shortage is one of the major factor effects on growth characters and yield of most crops. Objective: this study was conducted to get to know the reactions of some Egyptian cotton genotypes to water deficit. Methods: The genetic materials used in this study included thirteen cotton genotypes belonging to Gossypium barbadense L., from the Cotton Research Institute (CRI), which was devoted to establishing the experimental materials for this investigation. Results: the ratio of GCA/SCA was less than unity for all studied indices, indicating predominance of non-additive gene action (dominance and epistasis), which is an important in exploitation of heterosis through hybrid breeding. Results: The data showed significant reduction in water relationship characters for all parental genotypes under stress conditions. The Egyptian variety Giza 68 gave high values for most water relationship characters. Data revealed that the greater the value of tolerance index is, the larger the yield reduction is under water deficit conditions and the higher the stress sensitivity is becoming. The parental genotypes Giza 96 showed the highest reduction in yield under water deficit conditions. At the same time, the cross combination Minufy x Australy showed higher values of yield reduction followed by the combinations Giza 67 x Australy. Of the male parents, the Russian genotype 10229 recorded the best GCA values for most water relationship characters. At the same time, the female parents, the old Egyptian genotype Giza 67 recorded the best values and exhibited good general combined for most water relationship characters. The cross combinations Giza 86 x Pima S6, Giza 77 x Pima S6, Giza 94 x Dandra and Giza 96 x Australy showed significant desirable SCA effect for most characters. Conclusion: relative water content %, osmotic pressure, chlorophyll and carotenoids content indicates better availability of water in the cell, which increases the photosynthetic rate. Also, the higher level of proline accumulation in the leaves which was recorded under deficit water suggests that the production of proline is probably a common response of plant under water deficit conditions.
-
Examination and statistical evaluation of physico-chemical parameters of windrow composting
33-38Views:253The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.
The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.
The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.
Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.
-
Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage
111-118Views:113The effect of mycorrhizal fungi and plant growth promoting rhizobacteria on some physiological properties, yield and soluble solid content (Brix) of ‘Uno Rosso’ F1 processing tomato was studied under water scarcity. Inoculation was performed with mycorrhizal fungi (M) and rhizobacteria preparation (PH) at sowing (M1, PH1) and sowing + planting (M2, PH2). The treated and untreated plants were grown with regular irrigation (RI = ET100%), with deficit irrigation (DI = ET50%) and without irrigation (I0). In drought, the canopy temperature of plants inoculated with arbuscular mycorrhizal fungi (M1, M2) decreased significantly, however, the decrease was small in those treated with the bacterium (PH1, PH2), while the SPAD value of the leaves of plants treated only with Phylazonit increased significantly. On two occasions, inoculations (M2, PH2) significantly increased the total yield and marketable yield, however, under water deficiency, a higher rate of green yield was detected than untreated plants. In dry year using deficit irrigation, the one-time inoculation (M1, PH1) provided a more favorable Brix value, while the double treatments reduced the Brix. In moderate water scarcity, the use of mycorrhizal inoculation (M2) is preferable, while under weak water stress, the use of rhizobacteria inoculation (PH2) is more favorable.
-
Applicability of hyperspectral technology for in situ phytoremediation
71-78Views:136The characterization of heavy metal polluted abandoned mining sites is a complicated assignment due to the variable spatial distribution of the pollutants, therefore complex integrated method is required in order to assess precisely the amount and the distribution of the contaminants. The examined area is flotation sludge reservoir of abandoned Pb-Zn mining site with serious heavy metal contamination. located in Gyöngyösoroszi, Northern Hungary.
The hyperspectral image of the flotation sludge is obtained by using a Digital Airborne Imaging Spectrometer DAIS 7915, in the frame of DLR HySens first Hungarian hyperspectral flight campaign (21/08/2002). Parallel to the flight campaign heavy metal content of soil samples were examined from the area of the flotation sludge. The analysis of hyperspectral data was verified by the examination of mine tailing samples by FPXRF (Field Portable X-ray Fluorescence spectrometry) (NITON XL-703).
Determinations of heavy metal containing minerals are based on the spectral profiles of the pixels of the area with using USGIS standard spectral profiles of the examined materials (galena, pyrite, sphalerite, goethite and jarosit).Applying the Spectral Angle Mapper with BandMax classification the distribution of minerals (galena, pyrite, sphalerite, goethite, jarosit) in the area was defined. The mineral formation occurs especially at the levees and the barren places of the Szárazvölgyi flotation sludge reservoir. Based on the statistic results of the samples, principal component analysis and correlation coefficient between the different metal content of the samples were calculated. The highest correlations were found between Pb-Zn, Fe-Zn and between Fe-Pb. This prove the results of the principal component analysis, where usually Pb, Zn, Fe introduce the main component.
Canopy analysis was also carried out with the hyperspectal image in order to classify the differences between vegetation types at the Szárazvölgy flotation sludge reservoir and analyse the applicability of it. Supervised classification methods were used to distinguish 8 vegetation types based on the spectral properties of the area. The results of the classifications were compared to a ground truth image, based on ortophoto, topographic map, and GPS based field data collection. According to results of the comparison, the paralellpiped classification method is proved to be appropriate method based on the overall accuracy of canopy classification, which was 54% due to heterogeneity of the vegetation.
The results of hyperspectral data and FPXRF analysis suggest that Pb, Zn and Fe containing minerals have similar spatial distribution in the examined and barren area.
Based on this study hyperspectral remote sensing is likely to be an effective tool for the characterization and modeling the distribution of Pb, Zn and Fe containing minerals at the examined heavy metal polluted sites. Further more, based on the vegetation analysis plant species for phytoremediation can be defined.
-
Leaf protein analyses in order to utilise the leaf shoot of artichoke
43-47Views:163The constat growth of the Earth’s population brings with itself a higher demand for food and protein not only in human nutrition but also for the feeding of livestock. Currently, the feed industry is mainly built onseed-based protein, wherethebaseplant is soybean, which is large lycovered by imports in Hungary, similar toother European countries. However, the long-term economically sustainable lifestock breeding demandschanges which has also worked out strategies. An alternative protein sources could be green leafy plants.
In current work the Jerusalem artichokes as an alternative source of protein was studied, compared to alfalfa as a valuable protein plant. Our results indicate that fiber fraction ofJerusalem artichoke shootswas 34 to 37% after pressing in the autumn period while alfalfa slightly lower values were obtained (30%). On the other hand extracted green leaf protein concentration was higher in alfalfa than in Jerusalem artichoke. Along with this higher protein content could be measured from the leaf protein concentration of alfalfa and almost each amino acids were more, as well comparing to Jerusalem artichoke.
Overall, the alfalfa proved to be advantageous as expected both in leaf protein extraction efficiency, both regarding the content of the protein in the Jerusalem artichoke. However, considering aminoacid composition and green biomass production, Jerusalem artichokecould be a promisingplant species asplant protein sourceinthefuture.
-
Improved soil and tomato quality by some biofertilizer products
93-105Views:283The use of microbial inoculums is a part of sustainable agricultural practices. Among various bioeffectors, the phosphorus-mobilizing bacteria are frequently used.
The objective of this study is to investigate the effect of some industrial biofertilizer inoculums, of containing P-mobilizing bacteria on the quantity and some quality parameters of tomato fruits. Spore-forming industrial Bacillus amyloliquefaciens FZB42 (Rhizovital) as single inoculums and combinations with other Bacillus strains (Biorex) were applied on Solanum lycopersicon Mill. var. Mobil test plant. Soil microbial counts, phosphorus availability, yield and fruit quality, such as total soluble solids (TSS) content and sugars (glucose, fructose) were assessed. The results found that single industrial inoculums of FZB42 product had positive effect on P-availability and fruit quality in the pots. Fruit quality parameters, TSS content, soluble sugars were significantly improved (p<0.05). Such better fruit taste was correlated significantly by the most probable number (MPN) microbial counts. Use of such bioeffector products is supported by the positive interrelation among measured soil characteristics and inside healthy quality parameters of tomato fruits.
-
Relationship between the change of soil moisture content of different soil layers and maize yield
19-25Views:186The development of chernozem soil water management and its relationship with maize yields was studied in a 30-years long-term field experiment with different crop-rotation systems (mono-, bi- and triculture), in three crop years with different natural precipitation: a drought (2007), a wet (2008) and a dry (2009 one. The relevant soil layer was divided to three sub-layers: (0–60 cm, 61–120 cm, 121–200 cm) in which the development of soil moisture content was investigated during the whole vegetation. From the results it can be stated that change of the water stock of the upper soil layer (0–60 cm) was the most intensive. Both the direct effect of natural precipitation and irrigation could be observed in the most obvious way in it. Yield result of maize and the highest water supply deficit values in the vegetation were compared in our work too. According to the results it was revealed that among the three studied crop rotation systems it was the monoculture, the success of production of which depends the most of water supply. The most favourable crop rotation system was the triculture from both the aspect of the yield of produced crops and the favourable soil properties too.
-
The effect of various composts on vegetable green mass on two soil types
179-183Views:180Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing. -
The effects of fertilization on the protein related properties of winter wheat
67-69Views:137The yield and quality of wheat are mainly determined by the plant production system, thus we studied the effect of mineral fertilization.
The field trials were set up in 1983 at the Látókép Research Institute of the University of Debrecen. We examined effect of different Nfertilizer doses (60 kg ha-1 N/P/K, 120 kg ha-1 N/P/K) on Lupus, Mv Toldi and GK Csillag's protein properties in 2012. During the tests, three quality parameters were determined: wet gluten content (%), wet gluten spread (mm/h) and gluten index (%). In the experiment the effect of different doses of N-fertilizers significantly influenced by the wet gluten content and gluten index of Lupus.
-
Opportunities for improving the nutritional value of cereal-based products
275-278Views:278We set up experiments for improving the nutritional value of cerealbased products. Our aims were to decrease the energy content of bakery products with the mixing of plant originated raw materials and byproducts with high fibre contents, and we have evaluated the effect of sodium-chloride on the physical properties of bakery products. We found that the apple pomace, the byproduct of juice production, is excellent for increasing of fibre content of bakery products and the further aim of investigation is to develop economical ways of hygienic byproduct handling and purification. Our experiments, evaluate the bakery use of triticale, have significant achievements and the breads made from triticale flour and whole-grain are commercially available nowadays. Our investigations included the possibilities of decrease of toxin contamination of cereals and our results can form a part of risk estimation systems after further experiments .
-
Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
203-207Views:144The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. -
Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition
111-121Views:148The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.
-
Exogenous salicylic acid treatments enhance tolerance to salinity of wheat (Triticum aestivum) plantlets
34-38Views:130Salt stress, an abiotic stress, determines modifications of some biochemical indicators, like, antioxidant enzymes, proline (amino acid
accumulate in higher plants under salinity stress) content, and some physiological processes including: plant growth and development. In
this paper we studied the influence of exogenous treatment of wheat seeds, with 0.1 mM salicylic acid (SA) solution, in the plant response to
salt stress. The treatment was applied by presoaking the seeds in the treatment solution for 12 hours before germination. The results showed
that exogenous 0.1 mM SA solution, administrated to the wheat cariopses significantly ameliorated the negative effect of salt stress in first
week of germination in laboratory conditions. -
Effect of plant growth promoting Rhizobacteria (PGPRS) on yield and quality of processing tomato under water deficiency
19-22Views:233Chlorophyll fluorescence was measured of H1015 tomato hybrid with different bacterial treatments (B0–B1–B2–B3) and three irrigation treatments: regular irrigated (RI), deficit irrigated (DI) and non-irrigated conditions (I0). The aim of the experiments was to show the effects of plant growth promoting rhizobacteria on the yield, dry matter and vitamin C content of processing tomato during different irrigation treatments, and measuring the chlorophyll fluorescence during the ripening and development stages. According to the results, none of the bacterial treatments had a statistical effect on the quantity and quality of the tomato and on the chlorophyll fluorescence, only the irrigation. Further studies are needed.
-
Nutrient Uptake of Miscanthus in vitro Cultures
23-24Views:91The large biomass production and the low necessary input fertilizer make Miscanthus an interesting, potential non-food crop with broad applications, e.g. for fuel and energy, for thatching, fiber production, for the paper and car industries, as well as for ethanol production.
Axillary buds of Miscanthus x giganteus were placed on a shoot inducing nutrient solution (modified Murashige and Skoog, 1962), basic medium supplemented with 0,3 mg l-1 6-Benzylaminopurin. After 40 days of culturing, the axillary buds produced three times more shoots than could normally be harvested. The nutrient content (N, P, K, Ca, Mg) was measured several times during culturing. The results showed that, after 35 days, nitrogen and phosphate were nearly completely taken up. From that time, shoot growth was not observed.
After shoot propagation, the plants were transfered into a nutrient solution for root formation (modified Murashige and Skoog, 1962), basic medium supplemented with 0,5 mg l-1 Indole- 3-Butyric acid, and could be potted in soil after about 14 days. -
Growth regulators influence on stability of shoots and ascorbic acid content at cadmium and nickel joint action
9-12Views:135It is shown that for a maize the most effective protector of cadmium and nickel influence was zeastimulin, for a pea – agrostimulin.A protective function of emistim C for both cultures was insignificant. It is set that zeastimulin is influential in the increased metals absorption of a root system, however substantially (on 15% for a nickel and twice for a cadmium) reduces their translocation to above-ground part of plants. Previous treatment of pea seed by agristimulin also intensified the accumulation of nickel roots on 60% and did not influence on cadmium absorption and toxicants translocation to tissues of assimilatory organs. The protector role of growth regulators to cadmium and nickel joint influence shows up in the increase of ascorbic acid maintenance in the roots cells of both species to 34%, where as in leaves – at a maize resulted in the lowering of vitamin С amount (on 28%), but at a pea – increase on 20%.
-
Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
11-14Views:245In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.
In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.
In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.
In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.
-
Investigation of the decomposition and leaching dynamics of Salix, Populus and mixed leaves in the area of Lake Balaton and Kis-Balaton Wetland
119-124Views:207In lakes and wetlands, leaf litter input from the coastal vegetation represents a major nutrient load and plays a basic structural and functional role in several ecosystems. In Hungary, at the banks of lakes and wetlands, Salix and Populus trees are the most common species. In an experiment in Lake Balaton and Kis-Balaton Wetland between 16 November 2017 to and 3 June 2018, the decomposition rates and leaching dynamics of Salix, Populus and mixed leaves (50% Salix and 50% Populus) were investigated. Total nitrogen and phosphorus content of biomass samples were measured at the beginning and end of the experiment for the leaching dynamics experiment. We found that litter mass losses (Salix, Populus and mixed leaves) were not significantly different between the two mesh size litterbags and between Lake Balaton and Kis-Balaton Wetland. Different amounts of the total nitrogen and phosphorus leaching from Salix, Populus and mixed leaves were detected. The total nitrogen contents of the plant samples were around 8-18% at the end of the investigated period. Slightly higher values were measured compared to phosphorous (27-29%).