Articles

Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition

Published:
2022-05-26
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Melash, A. A., & Ábrahám, Éva B. (2022). Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition. Acta Agraria Debreceniensis, 1, 111-121. https://doi.org/10.34101/actaagrar/1/10428
Received 2021-12-10
Accepted 2022-04-27
Published 2022-05-26
Abstract

The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.

References
  1. Aisawi, K.A.–Reynolds, M.P.–Singh, R.P.–Foulkes, M.J. (2015): The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55: 1749–1764. https://doi.org/10.2135/cropsci2014.09.0601
  2. Araus, J.L.–Slafer, G.A.–Reynolds, M.P.–Royo, C. (2002): Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89, 7: 925–940. https://doi.org/10.1093/aob/mcf049
  3. Boussakouran, A.–Mohamed E.Y.–El Hassan, S.–Yahia, R. (2021): Genetic Advance and Grain Yield Stability of Moroccan Durum Wheats Grown under Rainfed and Irrigated Conditions. Int. J. Agron. 2021:13. https://doi.org/10.1155/2021/5571501
  4. Csajbók, J.–Pepó, P.–Kutasy, E. (2020): Photosynthetic and Agronomic Traits of Winter Barley (Hordeum vulgare L.) Varieties. Agronomy. 10: 1999. https://doi.org/10.3390/agronomy10121999
  5. Din, M.–Zheng, W.–Rashid, M.–Wang, S.–Shi, Z. (2017): Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages. Front. Plant Sci. 8: 820. https://doi.org/10.3389/fpls.2017.00820
  6. Ewa, P.–Dariusz, G. (2020): Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl.: Soc. Environ. 17: 100286. https://doi.org/10.1016/j.rsase.2019.100286
  7. Fernando, S.–Daniel, J.M. (2008): Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 28, 3: 282–290. https://doi.org/10.1016/j.eja.2007.08.002
  8. Fischer, R.A.–Byerlee, D.–Edmeades, G. (2014): Crop yields and global food security: Will yield increase continue to feed the world? ACIAR Monograph 158 (Australian Centre for International Agricultural Research. Canberra. xxii+634 pp. https://www.aciar.gov.au/publication/books-and-manuals/crop-yields-and-global-food-security-will-yield-increase-continue-feed-world
  9. Gitelson, A.A.–Keydan, G.P.–Merzlyak, M.N. (2006): Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 33: 11402. https://doi.org/10.1029/2006GL026457
  10. Hamblin, J.–Stefanova, K.–Angessa, T.T. (2014): Variation in Chlorophyll Content per Unit Leaf Area in Spring Wheat and Implications for Selection in Segregating Material. PLoS ONE 9, 3: e92529. https://doi.org/10.1371/journal.pone.0092529
  11. Hussain, I.–Khan, M.A.–Khan, E.A. (2006): Bread wheat varieties as influenced by different nitrogen levels. J Zhejiang Univ. Sci. B. 7, 1: 70–78. https://doi.org/10.1631/jzus.2006.B0070
  12. Ilze, S.–Antons, R. (2017): Effect of Nitrogen and Sulphur Fertilization on Chlorophyll Content in Winter Wheat. Rural Sustain. Res. 37: 332. https://doi.org/10.1515/plua-2017-0004
  13. Iqbal, M.A.–Junaid, R.–Wajid, N.–Sabry, H.–Yassir, K.–Ayman, S. (2021): Rainfed winter wheat cultivars respond differently to integrated fertilization in Azad Kashmir, Pakistan. Fres. Environ. Bullet. 30: 3115–3121. As cited by Kizilgeci, F.–Yildirim, M.–Islam, M.S.–Ratnasekera, D.–Iqbal, M.A.–Sabagh, A.E. (2021): Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability. 13: 3725. https://doi.org/10.3390/su13073725
  14. John, F.M.–Gustavo, A.S.–William, J.D.–Pete, M.B.–Roger S.B.–Pierre, M.–Daniel, F.–Calderini, S.G.–Matthew, P.R. (2011): Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62, 2: 469–486. https://doi.org/10.1093/jxb/erq300
  15. Kandel, B.P. (2020): Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Res Notes. 13: 475. https://doi.org/10.1186/s13104-020-05324-7
  16. Kapoor, D.–Bhardwaj, S.–Landi, M.–Sharma, A.–Ramakrishnan, M.–Sharma, A. (2020): The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 10: 5692. https://doi.org/10.3390/app10165692
  17. Khobra, R.–Sareen, S.–Meena, B.K.–Kumar, A.–Tiwari, V.–Singh, G.P. (2019): Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants. 25: 589–600. https://doi.org/10.1007/s12298-018-0629-x
  18. Kizilgeci, F.–Yildirim, M.–Islam, M.S.–Ratnasekera, D.–Iqbal, M.A.–Sabagh, A.E. (2021) Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability. 13: 3725. https://doi.org/10.3390/su13073725
  19. Leilei, L.–Hongting, J.–Junpeng, A.–Kejia, S.–Jifeng, M.–Bing, L.–Liang, T.–Weixing, C.–Yan, Z. (2019): Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environ. Exp. Bot. 157: 46–57. https://doi.org/10.1016/j.envexpbot.2018.09.026
  20. Lin, X.–Li, P.–Shang, Y.–Shuaikang, L.–Sen, W.–Xinhui, H.–Dong, W. (2020): Spike formation and seed setting of the main stem and tillers under post-jointing drought in winter wheat. J. Agro. Crop Sci. 206: 694–710. https://doi.org/10.1111/jac.12432
  21. Maeoka, R.E.–Sadras, V.O.–Ciampitti, I.A.–Diaz, D.R.–Fritz A.K.–Lollato, R.P. (2020): Changes in the Phenotype of Winter Wheat Varieties Released Between 1920 and 2016 in Response to In-Furrow Fertilizer: Biomass Allocation, Yield, and Grain Protein Concentration. Front Plant Sci.10:1786. https://doi.org/10.3389/fpls.2019.01786
  22. Markwell, J.–Osterman, J.C.–Mitchell, J.L. (1995): Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46, 3: 467–472. https://doi.org/10.1007/BF00032301
  23. Melash, A.A.–Dejene, K.M.–Dereje, A.–Alemtsehay, T. (2019): The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. J. Cereal Sci. 85: 221–227. https://doi.org/10.1016/j.jcs.2018.08.005
  24. Mengistu, D.–Kiros, A.–Mohammed, J.–Tsehaye, Y.–Fadda, C. (2019): Exploitation of diversity within farmers' durum wheat varieties enhanced the chance of selecting productive, stable and adaptable new varieties to the local climatic conditions. Plant Genet. Resour.: Characterisation Util. 17, 5:401–411. doi:10.1017/S1479262119000194.
  25. Milan, M.–Momčilović, V.–Čanak, P.–Aćin, V.–Jocković, B.–Vujošević, B. (2018): Variation in NDVI values and relationship with grain yield in two-rowed winter barley. Ratarstvo i Povrtarstvo. 55,3:118–124. DOI: 10.5937/RatPov1803118M
  26. Monteoliva, M.I.–Guzzo, M.C.–Posada, G.A. (2021): Breeding for Drought Tolerance by Monitoring Chlorophyll Content. Gene Technol. 10:165.
  27. Mosavian, S.N.–Eisvand, H.R.–Akbari, N.–Moshatati, A.–Ismaili, A. (2021): Do nitrogen and zinc application alleviate the adverse effect of heat stress on wheat (Triticum aestivum L.)? Not Bot Horti Agrobot Cluj Napoca. 49, 2: 12252. https://doi.org/10.15835/nbha49212252
  28. Muhammad, I.–Shalmani, A.–Ali, M.–Yang, Q.H.–Ahmad, H.–Li, F.B. (2021): Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci. 11,1: 2310. https://doi.org/10.3389/fpls.2020.615942
  29. Noah, D.W.–Mohammed, G.–Edwin, L.–Paul, M.–David, M.–Mohamed, M.–Jerry, J.–James, B.H.–Gina, B.G. (2020): Genetic variation for plant growth traits in a common wheat population is dominated by known variants and novel QTL. Rxiv. 12, 16: 422696. https://doi.org/10.1101/2020.12.16.422696
  30. Payne, R.–Harding, M. Baird, D.–Soutar. D. (2011): An Introduction to GenStat for Windows, fourteenth ed. VSN International Ltd, Hemel Hempstead, UK introduction.
  31. Piotr, S.–Jan, B.–Magdalena, R. (2012): The effect of soil supplementation with nitrogen and elemental sulphur on chlorophyll content and grain yield of maize (Zea mays L.). Žemdirbystė=Agriculture. 99, 3: 247–254.
  32. Qi, H.–Zhu, B.–Kong, L.–Yang, W.–Zou, J.–Lan, Y.–Zhang, L. (2020): Hyperspectral Inversion Model of Chlorophyll Content in Peanut Leaves. Appl. Sci. 10, 2259. https://doi.org/10.3390/app10072259
  33. Ramkumar, M.K.–Senthil K.S.–Gaikwad, K.–Pandey, R.–Chinnusamy, V.–Singh, N.K.–Singh, A.K.–Mohapatra, T.–Sevanthi, A.M. (2019): Novel Stay-Green Mutant of Rice with Delayed Leaf Senescence and Better Harvest Index Confers Drought Tolerance. Plants. 8: 375. https://doi.org/10.3390/plants8100375
  34. Reynolds, M.P.–Foulkes, M.J.–Slafer, G.A.–Berry, P.M.–Parry, M.A. –Snape, J.W. –Angus, W.J. (2009): Raising yield potential in wheat. J. Exp. Bot. 60: 1899–1918. https://doi.org/10.1093/jxb/erp016
  35. Roy, C.–Chattopadhyay, T.–Ranjan, R.D.–Ul, H.W.–Kumar, A.–De, N. (2021): Association of leaf chlorophyll content with the stay-green trait and grain yield in wheat grown under heat stress conditions. Czech J. Genet. Plant Breed. 57: 140−148. https://doi.org/10.17221/45/2021-CJGPB
  36. Sanglard, L.M.–Martins, S.C.–Detmann, K.C.–Silva, P.E.–Lavinsky, A.O.–Silva, M.M.–Detmann, E.–Araujo, W.L.–DaMatta, F.M. (2014): Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: An analysis of the key limitations of photosynthesis. Physiol. Plant. 152: 355–366. https://doi.org/10.1111/ppl.12178
  37. Sattar, A.–Wang, X.–Abbas, T.–Sher, A.–Ijaz, M.–Ul-Allah, S., et al. (2021): Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms. PLoS ONE. 16,10: e0256984. https://doi.org/10.1371/journal.pone.0256984
  38. Shahzad, J.S.–Roghayyeh Z.M.–Asgar, Y.–Majid, K.–Roza, G. (2010): Effect of nitrogen fertilizer levels and plant density on some physiological traits of durum wheat. American-Eurasian J. Agric. & Environ. Sci. 9,2: 121–127.
  39. Srinivasan, V.–Kumar, P.–Long, S.P. (2017): Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob Change Biol. 23: 1626–1635. https://doi.org/10.1111/gcb.13526
  40. Subira, J.–Álvaro, F.–García del Moral, L.F.–Royo, C. (2015): Breeding effects on the cultivar × environment interaction of durum wheat yield. Eur. J. Agron. 68: 78–88. https://doi.org/10.1016/j.eja.2015.04.009
  41. Thomas, R.S.–Russell, C.M. (1999): Radiation Use Efficiency, Editor(s): Donald L. Sparks, Advances in Agronomy, Academic Press. 65: 215–265. https://doi.org/10.1016/S0065-2113(08)60914-1
  42. Tshikunde, N.M.–Mashilo, J.–Shimelis, H.–Odindo, A. (2019): Agronomic and Physiological Traits, and Associated Quantitative Trait Loci (QTL) Affecting Yield Response in Wheat (Triticum aestivum L.): A Review. Front Plant Sci. 5,10:1428. https://doi.org/10.3389/fpls.2019.01428
  43. Weina, Z.–Haigang, L.–Junling, Z.–Jianbo, S.–Hamish, B.–Enli, W. (2022): Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar, The Crop Journal. 10: 254–261. https://doi.org/10.1016/j.cj.2021.02.014.
  44. Würschum, T.–Leiser, W.L.–Langer, S.M.–Tucker, M.R.–Longin, C.F.H. (2018): Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 131: 2071–2084. https://doi.org/10.1007/s00122-018-3133-3
  45. Xiaolong, G.–Xiangyu, M.–Jialiang, Z.–Jinghuan, Z.–Tian, L.–Qifei, W.–Xiaoming, W.–Wei, H.–Shengbao, X. (2021): Meta-analysis of the role of zinc in coordinating absorption of mineral elements in wheat seedlings. Plant Methods. 17: 105. https://doi.org/10.1186/s13007-021-00805-7
  46. Yasir, T.A.–Wasaya, A.–Hussain, M.–Ijaz, M.–Farooq, M.–Farooq, O.–Nawaz, A.–Hu, Y.G. (2019): Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiol. Mol. Biol. Plants. 25, 5: 1163–1174. https://doi.org/10.1007/s12298-019-00694-0
  47. Yin, X.–Lantinga, E.A.–Schapendonk, A.H.–Zhong, X. (2003): Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann Bot. 91, 7: 893–903. https://doi.org/10.1093/aob/mcg096