Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition


Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Melash, A. A., & Ábrahám, Éva B. (2022). Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition. Acta Agraria Debreceniensis, 1, 111-121.
Received 2021-12-10
Accepted 2022-04-27
Published 2022-05-26

The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.

  1. Aisawi, K.A.–Reynolds, M.P.–Singh, R.P.–Foulkes, M.J. (2015): The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55: 1749–1764.
  2. Araus, J.L.–Slafer, G.A.–Reynolds, M.P.–Royo, C. (2002): Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89, 7: 925–940.
  3. Boussakouran, A.–Mohamed E.Y.–El Hassan, S.–Yahia, R. (2021): Genetic Advance and Grain Yield Stability of Moroccan Durum Wheats Grown under Rainfed and Irrigated Conditions. Int. J. Agron. 2021:13.
  4. Csajbók, J.–Pepó, P.–Kutasy, E. (2020): Photosynthetic and Agronomic Traits of Winter Barley (Hordeum vulgare L.) Varieties. Agronomy. 10: 1999.
  5. Din, M.–Zheng, W.–Rashid, M.–Wang, S.–Shi, Z. (2017): Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages. Front. Plant Sci. 8: 820.
  6. Ewa, P.–Dariusz, G. (2020): Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl.: Soc. Environ. 17: 100286.
  7. Fernando, S.–Daniel, J.M. (2008): Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 28, 3: 282–290.
  8. Fischer, R.A.–Byerlee, D.–Edmeades, G. (2014): Crop yields and global food security: Will yield increase continue to feed the world? ACIAR Monograph 158 (Australian Centre for International Agricultural Research. Canberra. xxii+634 pp.
  9. Gitelson, A.A.–Keydan, G.P.–Merzlyak, M.N. (2006): Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 33: 11402.
  10. Hamblin, J.–Stefanova, K.–Angessa, T.T. (2014): Variation in Chlorophyll Content per Unit Leaf Area in Spring Wheat and Implications for Selection in Segregating Material. PLoS ONE 9, 3: e92529.
  11. Hussain, I.–Khan, M.A.–Khan, E.A. (2006): Bread wheat varieties as influenced by different nitrogen levels. J Zhejiang Univ. Sci. B. 7, 1: 70–78.
  12. Ilze, S.–Antons, R. (2017): Effect of Nitrogen and Sulphur Fertilization on Chlorophyll Content in Winter Wheat. Rural Sustain. Res. 37: 332.
  13. Iqbal, M.A.–Junaid, R.–Wajid, N.–Sabry, H.–Yassir, K.–Ayman, S. (2021): Rainfed winter wheat cultivars respond differently to integrated fertilization in Azad Kashmir, Pakistan. Fres. Environ. Bullet. 30: 3115–3121. As cited by Kizilgeci, F.–Yildirim, M.–Islam, M.S.–Ratnasekera, D.–Iqbal, M.A.–Sabagh, A.E. (2021): Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability. 13: 3725.
  14. John, F.M.–Gustavo, A.S.–William, J.D.–Pete, M.B.–Roger S.B.–Pierre, M.–Daniel, F.–Calderini, S.G.–Matthew, P.R. (2011): Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62, 2: 469–486.
  15. Kandel, B.P. (2020): Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Res Notes. 13: 475.
  16. Kapoor, D.–Bhardwaj, S.–Landi, M.–Sharma, A.–Ramakrishnan, M.–Sharma, A. (2020): The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 10: 5692.
  17. Khobra, R.–Sareen, S.–Meena, B.K.–Kumar, A.–Tiwari, V.–Singh, G.P. (2019): Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants. 25: 589–600.
  18. Kizilgeci, F.–Yildirim, M.–Islam, M.S.–Ratnasekera, D.–Iqbal, M.A.–Sabagh, A.E. (2021) Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability. 13: 3725.
  19. Leilei, L.–Hongting, J.–Junpeng, A.–Kejia, S.–Jifeng, M.–Bing, L.–Liang, T.–Weixing, C.–Yan, Z. (2019): Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environ. Exp. Bot. 157: 46–57.
  20. Lin, X.–Li, P.–Shang, Y.–Shuaikang, L.–Sen, W.–Xinhui, H.–Dong, W. (2020): Spike formation and seed setting of the main stem and tillers under post-jointing drought in winter wheat. J. Agro. Crop Sci. 206: 694–710.
  21. Maeoka, R.E.–Sadras, V.O.–Ciampitti, I.A.–Diaz, D.R.–Fritz A.K.–Lollato, R.P. (2020): Changes in the Phenotype of Winter Wheat Varieties Released Between 1920 and 2016 in Response to In-Furrow Fertilizer: Biomass Allocation, Yield, and Grain Protein Concentration. Front Plant Sci.10:1786.
  22. Markwell, J.–Osterman, J.C.–Mitchell, J.L. (1995): Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46, 3: 467–472.
  23. Melash, A.A.–Dejene, K.M.–Dereje, A.–Alemtsehay, T. (2019): The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. J. Cereal Sci. 85: 221–227.
  24. Mengistu, D.–Kiros, A.–Mohammed, J.–Tsehaye, Y.–Fadda, C. (2019): Exploitation of diversity within farmers' durum wheat varieties enhanced the chance of selecting productive, stable and adaptable new varieties to the local climatic conditions. Plant Genet. Resour.: Characterisation Util. 17, 5:401–411. doi:10.1017/S1479262119000194.
  25. Milan, M.–Momčilović, V.–Čanak, P.–Aćin, V.–Jocković, B.–Vujošević, B. (2018): Variation in NDVI values and relationship with grain yield in two-rowed winter barley. Ratarstvo i Povrtarstvo. 55,3:118–124. DOI: 10.5937/RatPov1803118M
  26. Monteoliva, M.I.–Guzzo, M.C.–Posada, G.A. (2021): Breeding for Drought Tolerance by Monitoring Chlorophyll Content. Gene Technol. 10:165.
  27. Mosavian, S.N.–Eisvand, H.R.–Akbari, N.–Moshatati, A.–Ismaili, A. (2021): Do nitrogen and zinc application alleviate the adverse effect of heat stress on wheat (Triticum aestivum L.)? Not Bot Horti Agrobot Cluj Napoca. 49, 2: 12252.
  28. Muhammad, I.–Shalmani, A.–Ali, M.–Yang, Q.H.–Ahmad, H.–Li, F.B. (2021): Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci. 11,1: 2310.
  29. Noah, D.W.–Mohammed, G.–Edwin, L.–Paul, M.–David, M.–Mohamed, M.–Jerry, J.–James, B.H.–Gina, B.G. (2020): Genetic variation for plant growth traits in a common wheat population is dominated by known variants and novel QTL. Rxiv. 12, 16: 422696.
  30. Payne, R.–Harding, M. Baird, D.–Soutar. D. (2011): An Introduction to GenStat for Windows, fourteenth ed. VSN International Ltd, Hemel Hempstead, UK introduction.
  31. Piotr, S.–Jan, B.–Magdalena, R. (2012): The effect of soil supplementation with nitrogen and elemental sulphur on chlorophyll content and grain yield of maize (Zea mays L.). Žemdirbystė=Agriculture. 99, 3: 247–254.
  32. Qi, H.–Zhu, B.–Kong, L.–Yang, W.–Zou, J.–Lan, Y.–Zhang, L. (2020): Hyperspectral Inversion Model of Chlorophyll Content in Peanut Leaves. Appl. Sci. 10, 2259.
  33. Ramkumar, M.K.–Senthil K.S.–Gaikwad, K.–Pandey, R.–Chinnusamy, V.–Singh, N.K.–Singh, A.K.–Mohapatra, T.–Sevanthi, A.M. (2019): Novel Stay-Green Mutant of Rice with Delayed Leaf Senescence and Better Harvest Index Confers Drought Tolerance. Plants. 8: 375.
  34. Reynolds, M.P.–Foulkes, M.J.–Slafer, G.A.–Berry, P.M.–Parry, M.A. –Snape, J.W. –Angus, W.J. (2009): Raising yield potential in wheat. J. Exp. Bot. 60: 1899–1918.
  35. Roy, C.–Chattopadhyay, T.–Ranjan, R.D.–Ul, H.W.–Kumar, A.–De, N. (2021): Association of leaf chlorophyll content with the stay-green trait and grain yield in wheat grown under heat stress conditions. Czech J. Genet. Plant Breed. 57: 140−148.
  36. Sanglard, L.M.–Martins, S.C.–Detmann, K.C.–Silva, P.E.–Lavinsky, A.O.–Silva, M.M.–Detmann, E.–Araujo, W.L.–DaMatta, F.M. (2014): Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: An analysis of the key limitations of photosynthesis. Physiol. Plant. 152: 355–366.
  37. Sattar, A.–Wang, X.–Abbas, T.–Sher, A.–Ijaz, M.–Ul-Allah, S., et al. (2021): Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms. PLoS ONE. 16,10: e0256984.
  38. Shahzad, J.S.–Roghayyeh Z.M.–Asgar, Y.–Majid, K.–Roza, G. (2010): Effect of nitrogen fertilizer levels and plant density on some physiological traits of durum wheat. American-Eurasian J. Agric. & Environ. Sci. 9,2: 121–127.
  39. Srinivasan, V.–Kumar, P.–Long, S.P. (2017): Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob Change Biol. 23: 1626–1635.
  40. Subira, J.–Álvaro, F.–García del Moral, L.F.–Royo, C. (2015): Breeding effects on the cultivar × environment interaction of durum wheat yield. Eur. J. Agron. 68: 78–88.
  41. Thomas, R.S.–Russell, C.M. (1999): Radiation Use Efficiency, Editor(s): Donald L. Sparks, Advances in Agronomy, Academic Press. 65: 215–265.
  42. Tshikunde, N.M.–Mashilo, J.–Shimelis, H.–Odindo, A. (2019): Agronomic and Physiological Traits, and Associated Quantitative Trait Loci (QTL) Affecting Yield Response in Wheat (Triticum aestivum L.): A Review. Front Plant Sci. 5,10:1428.
  43. Weina, Z.–Haigang, L.–Junling, Z.–Jianbo, S.–Hamish, B.–Enli, W. (2022): Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar, The Crop Journal. 10: 254–261.
  44. Würschum, T.–Leiser, W.L.–Langer, S.M.–Tucker, M.R.–Longin, C.F.H. (2018): Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 131: 2071–2084.
  45. Xiaolong, G.–Xiangyu, M.–Jialiang, Z.–Jinghuan, Z.–Tian, L.–Qifei, W.–Xiaoming, W.–Wei, H.–Shengbao, X. (2021): Meta-analysis of the role of zinc in coordinating absorption of mineral elements in wheat seedlings. Plant Methods. 17: 105.
  46. Yasir, T.A.–Wasaya, A.–Hussain, M.–Ijaz, M.–Farooq, M.–Farooq, O.–Nawaz, A.–Hu, Y.G. (2019): Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiol. Mol. Biol. Plants. 25, 5: 1163–1174.
  47. Yin, X.–Lantinga, E.A.–Schapendonk, A.H.–Zhong, X. (2003): Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann Bot. 91, 7: 893–903.