Abdoli, M.–Esfandiari, E.−Mousavi, S.B.−Sadeghzadeh, B. (2014): Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture. 1: 11–16.
Ambuj, B.–Thomas, D. (2020): Biofortification of Pulse Crops: Status and Future Perspectives. Plants. 9: 73. doi:10.3390/plants9010073
Badakhshan, H.–Moradi, N.–Mohammadzadeh, H.–Zakeri, M.R. (2013): Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. Int. J. Agric. Crop Sci. 2013, 6, 57.
Bagci, S.A.–Ekiz, H.–Yilmaz, A.–Cakmak, I. (2007): Effects of Zinc Deficiency and Drought on Grain Yield of Field-grown Wheat Cultivars in Central Anatolia. Journal of Agronomy and Crop Science. 193: 198–206.
https://doi.org/10.1111/j.1439-037X.2007.00256.x
Bailey, R.–West, K.–Black, R. (2015): The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66: 22–33.
Blancquaert, D.–De Steur, H.–Gellynck, X.–Van Der Straeten, D. (2014): Present and future of folate biofortification of crop plants. J. Exp. Bot. 65: 895–906.
Borrill, P.–Connorton, J.–Balk, J.–Miller, T.–Sanders, D.–Uauy, C. (2014): Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science. 5.
https://doi.org/10.3389/fpls.2014.00053
Bouis, H.–Hotz, C.–McClafferty, B.–Meenakshi, J.–Pfeiffer, W. (2011): Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32: 31–40.
Bouis, H.–Welch, R. (2010): Biofortification—A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition in the Global South. Crop Science. 50: 20–32.
Cakmak, I.–Torun, A.–Millet, E.–Feldman, M.–Fahima, T.–Korol A.–Nevo, E.–Braun H.–Ozkan, H. (2004): Triticum dicoccoides: An Important Genetic Resource for Increasing Zinc and Iron Concentration in Modern Cultivated Wheat. Soil Science and Plant Nutrition. 50: 1047–1054.
http://dx.doi.org/10.1080/00380768.2004.10408573
Calderini, D.–Ortiz-Monasterio, I. (2003): Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica. 134:169–178.
Carvalho, S.–Vasconcelos, M. (2013): Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 54: 961–971.
Chizuru, N.–Ricardo, U.–Shiriki, K.–Prakash, S. (2003): The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr. 7:245–50. doi:10.1079/PHN2003592
Collard, B.C.–Mackill, D.J. (2008): Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci. 363: 557–572.
https://doi.org/10.1098/rstb.2007.2170.
De Valença, A.–Bake, A.–Brouwer, I.–Giller, K. (2017): Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security. 12: 8–14.
https://doi.org/10.1016/j.gfs.2016.12.001.
Dhaliwal, S.S.–Sadana, U.S.–Manchanda, J.S.–Khurana, M.P.–Shukla, A.K. (2013): Differential response of maize cultivars to iron (Fe) applied through ferti-fortification. Indian J. Fertil. 9: 52–57.
Dhaliwal, S.S.–Sharma, V.–Shukla, A.K.–Verma, V.–Kaur, M.–Shivay, Y.S.–Nisar, S.–Gaber, A.–Brestic, M.–Barek, V.–Skalicky, M.–Ondrisik, P.–Hossain, A. (2022): Biofortification–A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules. 27: 1340.
https://doi.org/10.3390/molecules27041340
Erenoglu, E.B.−Kutman, U.B.−Ceylan, Y.−Yildiz, B.−Cakmak, I. (2011): Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist. 189: 438–448.
Frison, E.A.–Cherfas, J.–Hodgkin, T. (2011): Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability. 3: 238–253.
https://doi.org/10.3390/su3010238
Garg, M.–Sharma, N.–Sharma, S.–Kapoor, P.–Kumar, A.–Chunduri, V.–Arora, P. (2018): Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Frontiers in Nutrition. 5: 12. DOI.10.3389/fnut.2018.00012
Gómez-Galera, S.–Rojas, E.–Sudhakar, D.–Zhu, C.–Pelacho, A.M.–Capell, T.–Christou P. (2010): Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 19:165–180.
Gopalakrishnan, S.–Vadlamudi, S.–Samineni, S.–Kumar, C. (2016): Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus. 5: 1882.
Górniak, W.–Cholewińska, P.–Konkol, D. (2018): Feed additives produced on the basis of organic forms of micronutrients as a means of biofortification of food of animal origin. J. Chem. 8084127.
https://doi.org/10.1155/2018/8084127
Graham, R.–Senadhira, D.–Bebe, S.–Iglesias, C.–Monasterio, I. (1999): Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res. 60:57–80.
Gupta, P.K.–Balyan, H.S.–Sharma, S.–Kumar, R. (2020): Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theor. Appl. Genet. 2020: 1–35.
https://doi.org/10.1007/s00122-020-03709-7
Han, X. –Ding, S. –Lu, J. –Li, Y. (2022): Global, regional, and national burdens of common micronutrient deficiencies from 1990 to 2019: A secondary trend analysis based on the Global Burden of Disease 2019 study. eClinicalMedicine, 44, 101299.
https://doi.org/10.1016/j.eclinm.2022.101299
Hao, Y.–Zhang, Y.–He, Z. (2015): Progress in zinc biofortification of crops. Chin Bull Life Sci. 27:1047–54. doi: 10.13376/j.cbls/2015144
Hefferon, K. (2016): Can biofortified crops help attain food security? Curr. Mol. Biol. Rep. 2, 180–185.
Hirschi, K. (2009): Nutrient biofortification of food crops. Annu Rev Nutr. 29:401–42
Huizar, M.–Arena, R.–Laddu, D. (2021): The global food syndemic: The impact of food insecurity, Malnutrition and obesity on the healthspan amid the COVID-19 pandemic. Progress in cardiovascular diseases. 64: 105–107.
https://doi.org/10.1016/j.pcad.2020.07.002
Impa, S.–Morete M.–Ismail, A.–Schulin, R.–Johnson-Beebout, S. (2013): Zn Uptake, Translocation, and Grain Zn Loading in Rice (Oryza sativa L.) Genotypes Selected for Zn Deficiency Tolerance and High Grain Zn. Journal of Experimental Botany. 64: 2739–2751.
http://dx.doi.org/10.1093/jxb/ert118
Kamaral, C.–Neate, S.M.–Gunasinghe, N.–Milham, P.J.–Paterson, D.J.–Kopittke, P.M. (2022): Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. Physiologia Plantarum. 174:1. e13612.
https://doi.org/10.1111/ppl.13612
Karim, M.R.–Zhang Y.Q.–Zhao, R.R.–Chen– X.P.–Zhang, F.S.–Zou, C.Q. (2012): Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 175: 142–151.
https://doi.org/10.1002/jpln.201100141
Khattak, S.G.–Dominy, P.J.–Ahmad, W. (2015): Effect of Zn as soil addition and foliar application on yield and protein content of wheat in alkaline soil. Journal of the National Science Foundation of Sri Lanka. 43:4, 303–312. DOI:
http://doi.org/10.4038/jnsfsr.v43i4.7965
Khokhar, J.S.–King, J.–King, I.P.–Young, S.D.–Foulkes, M.J.–DeSilva, J.–Weerasinghe, M.–Mossa, A.–Griffiths, S.–Riche, A.B. (2020): Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS ONE 2020, 15, e0229107.
https://doi.org/10.1371/journal.pone.0229107
Khokhar, J.S.–Sareen, S.–Tyagi, B.S.–Singh, G.–Wilson, L.–King, I.P.–Young, S.D.–Broadley, M.R. (2018): Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS ONE. 13. e0192026.
https://doi.org/10.1371/journal.pone.0192026
Klikocka, H.–Marks, M. (2018): Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. J. Chem. 9326820.
https://doi.org/10.1155/2018/9326820
Kutman, U.B.–Yildiz, B.–Cakmak, I. (2011): Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 342: 149–164.
https://doi.org/10.1007/s11104-010-0679-5
Ma, D.–Sun, D.–Wang, C.–Ding, H.–Qin, H.–Hou, J.–Huang, X.–Xie, Y.–Guo, T. (2017): Physiological Responses and Yield of Wheat Plants in Zinc-Mediated Alleviation of Drought Stress. Front. Plant Sci. 8:860.
https://doi.org/10.3389/fpls.2017.00860
Mao, H.–Wang, J.–Zan, Y.–Lyons, G.–Zou, C. (2014): Using Agronomic Biofortification to Boost Zinc, Selenium, and Iodine Concentrations of Food Crops Grown on the Loess Plateau in China. Journal of Soil Science and Plant Nutrition. 14: 459–470.
http://dx.doi.org/10.4067/s0718-95162014005000036
Maralian, H. (2009): Effect of Foliar Application of Zn and Fe on Wheat Yield and Quality. African Journal of Biotechnology. 8: 6795–6798.
Mathpal, B.–Srivastava, P.–Shankhdhar, D.–Shankhdhar, S. (2015): Zinc Enrichment in Wheat Genotypes under Various Methods of Zinc Application. Plant, Soil and Environment. 61: 171–175.
http://dx.doi.org/10.17221/41/2015-PSE
Mayer, J.E. –Pfeiffer, W.H. –Bouis, P. (2008): Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11:166–170.
Melash, A.A.–Dejene, K.M. (2020): Improving Grain Micronutrient Content of Durum Wheat (Triticum turgidum var. durum) through Agronomic Biofortification to Alleviate the Hidden Hunger. Advances in Agriculture. 2020: 6.
https://doi.org/10.1155/2020/7825413
Melash, A.A.–Dejene, K.M.–Dereje, A.A.–Alemtsehay, T. (2019): The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. Journal of Cereal Science. 85:221–227.
Melash, A.–Mengistu, D.–Aberra, D. (2016): Linking Agriculture with Health through Genetic and Agronomic Biofortification. Agricultural Sciences. 7: 295–307. doi: 10.4236/as.2016.75029.
Mostafa, I.–Islam, S.–Mondal, P.–Faruque, A.–Ahmed T.–Hossain, M. (2019): Factors affecting low coverage of the vitamin A supplementation program among young children admitted in an urban diarrheal treatment facility in Bangladesh. Glob Health Action. 12:1588513. doi: 10.1080/16549716.2019.1588513.
Naqvi, S.–Zhu, C.–Farre, G.–Ramessar, K.–Bassie, L.–Breitenbach, J.–Perez Conesa, D.–Ros, G.–Sandmann, G.–Capell, T. (2009): Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009. 106:7762–7767.
Narwal, R.–Malik, R.–Dahiya, R. (2010): Addressing Variations in Status of a Few Nutritionally Important Micronutrients in Wheat Crop. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, 1-6 August 2010, 1–3.
Nestel, P.–Bouis, H.–Meenakshi, J.–Pfeiffer, W. (2006): Biofortification of Staple Food Crops. Journal of Nutrition. 136: 1064–1067.
Ozturk, L.–Yazici, M.A.–Yucel, C.–Torun, A.–Cekic, C.–Bagci, A. –Ozkan, H.–Braun, H.J.–Sayers Z.–Cakmak, I. (2006): Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant. 128:144–152.
https://doi.org/10.1111/j.1399-3054.2006.00737.x
Paine, J.A.–Shipton, C.A.–Chaggar, S.–Howells, R.M.–Kennedy, M.J.–Vernon, G.–Wright, S.Y.–Hinchliffe, E.–Adams, J.L.–Silverstone, A.L. (2005b): Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482–487.
Paine, J.–Shipton, C.–Chaggar, S. (2005a): Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol. 23: 482–487.
https://doi.org/10.1038/nbt1082
Peleg, Z.–Saranga, Y.–Yazici, A.–Fahima, T.–Ozturk, L.–Cakmak, I. (2008): Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil, 306:57–67.
Phattarakul, N.–Rerkasem, B.–Li, L.–Wu, L.–Zou, C.–Ram, H.–Sohu, V.–Kang, B.–Surek, H.–Kalayci, M.–Yazici, A.–Zhang, –Cakmak, I. (2012): Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil, 361: 131–141.
Prasad R.–Yashbir S.S.–Dinesh, K. (2014): Chapter Two - Agronomic Biofortification of Cereal Grains with Iron and Zinc. Editor(s): Donald L. Sparks. Advances in Agronomy, Academic Press. 125: 55–91.
https://doi.org/10.1016/B978-0-12-800137-0.00002-9.
Ram, H.–Sohu, V.S.–Cakmak, I.–Singh, K.–Buttar, G.S.–Sodhi, G.P.–Gill, H.S.–Bhagat, I.–Singh, P.–Dhaliwal, S.S. (2015): Agronomic fortification of rice and wheat grains with zinc for nutritional security. Curr. Sci. 129: 1171–1176.
Ramaswami, B. (2007): Biofortified Crops and Biotechnology: A Political Economy Landscape for India. AgBioForum, 10, 170-177.
Rao, B.K.–Krishnappa, K.–Srinivasarao, S.P.–Wani, K.L.–Sahrawat, K.L.–Pardhasaradhi, G. (2012): Alleviation of multinutrient deficiency for productivity enhancement of rain-fed soybean and finger millet in semi-arid region of India. Commun. Soil Sci. Plant Anal. 43: 1427–1435.
Rengel, Z.–Batten, G.–Crowley, D. (1999): Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crop. Res, 60, 27–40.
Ruel, M.T.–Alderman, H. (2013): Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? Lancet. 382, 9891:536–551.
Samuel, S.M.–Ryan, W.K.–Itai, K.–Antonella, Z. –Joel, S. (2015): Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. The Lancet Global Health. 10: 639–645.
https://doi.org/10.1016/S2214-109X(15)00093-5.
Sharma, V.–Choudhary, M.–Kumar, P.–Choudhary, J.R. –Khokhar, J.S. –Kaushik, P. –Goli, S. (2021): Harnessing the Wild Relatives and Landraces for Fe and Zn Biofortification in Wheat through Genetic Interventions—A Review. Sustainability. 13: 12975.
https://doi.org/10.3390/su132312975
Shewry, P.R. −Pellny, T.K. −Lovegrove, A. (2016): Is modern wheat bad for health? Nature Plants. 2: 1–3.
Shunmugam, A.–Bock, C.–Arganosa, G.–Georges, F.–Gray, G.–Warkentin, T. (2015): Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.) mutants. Plants. 4: 1–26.
Singh, U.–Praharaj, C.S.–Singh, S.S.–Bohra, A. (2016): Biofortification: Introduction, approaches, limitations, and challenges. In Biofortification of Food Crops; Springer: New Delhi, India, 2016; pp. 3–18.
Smith, S. E.–Read, D.J. (2008): Mycorrhizal Symbiosis, 3rd Edn. New York, NY: Academic Press, 1–769. doi: 10.1016/B978-012370526-6.50002-7
Steur, H.D.–Mehta, S.–Gellynck, X.–Finkelstein, J.L. (2017): GM biofortified crops: Potential effects on targeting the micronutrient intake gap in human populations. Curr. Opin. Biotechnol. 44: 181–188.
https://doi.org/10.1016/j.copbio.2017.02.003.
Storozhenko, S.–De Brouwer, V.–Volckaert, M.–Navarrete, O.–Blancquaert, D.–Zhang G.F.–Lambert, W.–Van Der Straeten, D. (2007): Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 25: 1277–1279.
Trethowan, R.M.–Turner, M.A.–Chattha, T.M. (2010): Breeding Strategies to Adapt Crops to a Changing Climate. Adv. Glob. Chang. Res. 37: 155–174.
Vasconcelos, M.–Datta, K.–Oliva, N.–Khalekuzzaman, M.–Torrizo, L.–Krishnan, S.–Oliveira, M.–Goto, F.–Datta, S.K. (2003): Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164:371–378.
https://doi.org/10.1016/S0168-9452(02)00421-1.
Velu, G.–Ortiz-Monasterio, I.–Cakmak, I.–Hao, Y.–Signh, R. (2014): Biofortification Strategies to Increase Grain Zinc and Iron Concentrations in Wheat. Journal of Cereal Sciences. 59: 365–372.
http://dx.doi.org/10.1016/j.jcs.2013.09.001
Velu, G.–Singh, R.–Huerta-Espino, J.–PeÑa-Bautista, R.–Arun, B.–Mahendru-Singh, A.–Yaqub Mujahid, M.–Sohu, V.–Mavi, G.–Crossa, J. (2012): Performance of Biofortified Spring Wheat Genotypes in Target Environments for Grain Zinc and Iron Concentrations. Field Crops Research. 137: 261–267.
http://dx.doi.org/10.1016/j.fcr.2012.07.018
Welch, R.M–Graham, R.D. (2004): Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany. 55: 353–364.
https://doi.org/10.1093/jxb/erh064
White, J.–Broadley, M.R. (2005): Biofortifying crops with essential mineral elements. Trends Plant Sci. 10:586–93. doi:10.1016/j.tplants.2005.10.001
White, P.J.–Broadley, M. (2009): Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84.
Yilmaz, A.–Ekiz, H.–Torun, B.–Gultekin, I.–Karanlik, S.–Bagci, S. –Cakmak, I. (1997): Effect of Different Zinc Application Methods on Grain Yield and Zinc Concentration in Wheat Grown on Zinc-Deficient Calcareous Soils in Central Anatolia. Journal of Plant Nutrition. 20: 461–471.
http://dx.doi.org/10.1080/01904169709365267
Younes, K.A.–Raouf, S.S.–Reza, Seyed, S. (2016): Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. Journal of Plant Interactions. 11:1, 167–177.
https://doi.org/10.1080/17429145.2016.1262914
Zhang, Y.–Shi, R.–Rezaul, K.M.–Zhang, F.–Zou, C. (2010): Iron and Zinc Concentrations in Grain and Flour of Winter Wheat as Affected by Foliar Application. Journal of Agriculture and Food Chemistry. 58: 12268–12274.
http://dx.doi.org/10.1021/jf103039k
Zhao, F.J.–Shewry, P.R. (2011): Recent developments in modifying crops and agronomic practice to improve human health. Food Policy. 36: 94–101.
Zingore, S.–Delve, R.J.–Nyamangara, J.–Giller, K.E. (2008): Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutr. Cycl. Agroecosyst. 80: 267–282.
https://doi.org/10.1007/s10705-007-9142-2.