Articles

Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage

Published:
2023-12-01
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Nemeskéri, E., Le, A. T., Bakr, J., Posta, K., Neményi, A. B., Pék, Z., Takács, S., & Helyes, L. (2023). Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage. Acta Agraria Debreceniensis, 2, 111-118. https://doi.org/10.34101/actaagrar/2/13340
Abstract

The effect of mycorrhizal fungi and plant growth promoting rhizobacteria on some physiological properties, yield and soluble solid content (Brix) of ‘Uno Rosso’ F1 processing tomato was studied under water scarcity. Inoculation was performed with mycorrhizal fungi (M) and rhizobacteria preparation (PH) at sowing (M1, PH1) and sowing + planting (M2, PH2). The treated and untreated plants were grown with regular irrigation (RI = ET100%), with deficit irrigation (DI = ET50%) and without irrigation (I0). In drought, the canopy temperature of plants inoculated with arbuscular mycorrhizal fungi (M1, M2) decreased significantly, however, the decrease was small in those treated with the bacterium (PH1, PH2), while the SPAD value of the leaves of plants treated only with Phylazonit increased significantly. On two occasions, inoculations (M2, PH2) significantly increased the total yield and marketable yield, however, under water deficiency, a higher rate of green yield was detected than untreated plants. In dry year using deficit irrigation, the one-time inoculation (M1, PH1) provided a more favorable Brix value, while the double treatments reduced the Brix. In moderate water scarcity, the use of mycorrhizal inoculation (M2) is preferable, while under weak water stress, the use of rhizobacteria inoculation (PH2) is more favorable.

References
  1. Andryei, B.–Horváth, K.Zs.–Agyemang, Duah. S.–Takács, S.–Égei, M.–Szuvandzsiev, P.–Neményi, A. (2021): Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation of water deficiency of tomato plants (Solanum lycopersicum L.). J Cent Eur Agric 22 (1), 167–177. https://doi.org/10.5513/JCEA01/22.1.3036
  2. Bakr, J.A. (2018): Arbuscular Mycorrhizae fungi role in tomato (L. esculentum Mill.) production under water scarcity conditions. PhD Diss., Szent Istvan University, Gödöllő, Hungary
  3. Bakr, J.–Daood, H.G.–Pék, Z.–Helyes, L.–Posta, K. (2017): Yield and quality of mycorrhized processing tomato under water scarcity. Appl Ecol Environ Res 15, 401–413. http://dx.doi.org/10.15666/aeer/1501_401413
  4. Barriuso, J.–Solano, B.R.–Mañero, F.J.G. (2008): Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98, 666–672.
  5. Bharadwaj, D.P.–Alström, S.–Lundquist, P.O. (2011): Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22, 437–447.
  6. Bona, E.–Cantamessa, S.–Massa, N.–Manassero, P.–Marsano, F.–Copetta, A.–Lingua, G.–D’Agostino, G.–Gamalero, E.–Berta, G. (2017): Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27, 1–11. https://doi.org/10.1007/s00572-016-0727-y
  7. Calvo-Polanco, M.–Sánchez-Romera, B.–Aroca, R.–Asins, M.J.–Declerck, S.–Dodd, I.C.–Martínez-Andújar, C.–Albacete, A.–Ruiz-Lozano, J.M. (2016): Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131, 47–57.
  8. Candido, V.–Campanelli, G.–D’Addabbo, T.–Castronuovo, D.–Perniola, M.–Camele, I. (2015): Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes. Sci Hortic (Amsterdam) 187, 35–43. http://dx.doi.org/10.1016/j.scienta.2015.02.033
  9. Duc, N.H.–Csintalan, Zs.–Posta, K. (2018): Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132, 297–307. https://doi.org/10.1016/j.plaphy.2018.09.011
  10. Ebrahim, M.K.H.–Saleem, A.R. (2017): Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Univ Sci 11 (6), 850–860.
  11. Geerts, S.–Raes, D. (2009): Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manag 96 (9), 1275–1284.
  12. Ghoghari, N.–Bharwad, K.–Champaneria, A.–Rajkumar, S. (2022): Microbial consortia for augmentation of plant growth–revisiting the promising approach towards sustainable agriculture. In: New and Future Development in Microbial Biotechnology and Bioengineering. Sustainable Agriculture: Microorganisms as Biostimulants Singh, H.B., Vaishnav, A. Eds., Elsevier, Netherlands pp. 231–256.
  13. Giovannetti, M.–Mosse, M. (1980): Evaluation of the techniques for measuring vesicular arbuscular mycorrhizal infections in roots. New Phytol 84, 489–500.
  14. Gopal, S.–Chandrasekaran, M.–Shagol, C.–Kim, K.–Sa, T. (2012): Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J Soil Sci 45 (4), 582–592. https://doi.org/10.7745/KJSSF.2012.45.4.582
  15. Green, V.S.-Stott, D.E.-Diack, M. (2006): Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38 (4), 693–701.
  16. Helyes, L.–Varga, G. (1994): Irrigation demand of tomato according to the results of three decades. Acta Hortic 376, 323–328.
  17. Helyes, L.–Bőcs, A.–Pék, Z. (2010): Effect of water supply on canopy temperature, stomatal conductance and yield quantity of processing tomato (Lycopersicon esculentum Mill.). Int J Hortic Sci 16, 13–15. (Hungary).
  18. Kloepper, J.W.–Lifshitz, R.–Zablotowich, R.K. (1989): Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7, 39–43.
  19. Le, A.T.–Pék, Z.–Takács, S.–Neményi, A.–Helyes, L. (2018): The effect of plant growth-promoting rhizobacteria on yield, water use efficiency and Brix degree of processing tomato. Plant Soil Environ 64 (11), 523–529.
  20. Nemeskéri, E.–Molnár, K.–Pék, Z.–Helyes, L. (2018): Effect of water supply on water use related physiological traits and yield of snap beans in dry seasons. Irrig Sci 36 (3), 143–158.
  21. Nemeskéri, E.–Neményi, A.–Bőcs, A.–Pék, Z.–Helyes, L. (2019): Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water 11 (3), 586. https://doi.org/10.3390/w11030586
  22. Mansfeld-Giese, K.–Larsen, J.–Bodker, L. (2002): Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microb Ecol 41, 133–140.
  23. Oku, S.–Komatsu, A.–Tajima, T.–Nakashimada, Y.–Kato, K. (2012): Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microb Environ 27, 462–469.
  24. Pék, Z.–Szuvandzsiev, P.–Neményi, A.–Tuan, L.A.–Bakr, J.–Nemeskéri, E.–Helyes, L. (2019): Comparison of a water supply model with six seasons of cherry type processing tomato. Acta Hortic 1233 (1), 41–46. https://doi.org/10.17660/ActaHortic.2019.1233.7
  25. Rouphael, Y.–Franken, P.–Schneider, C.–Schwarz, D.–Giovannetti, M.–Agnolucci, M.–De Pascale, S.–Bonini, P.–Colla, G. (2015): Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196, 91–108.
  26. Sharifi, R.–Ryu, C.M. (2017): Chatting with a tiny belowground member of holobiome: communication between plants and growth-promoting rhizobacteria. Adv Bot Res 82, 135–160.
  27. Singh, V.K.–Singh, A.K.–Singh, P.P.–Kumar, A. (2018): Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agric Ecosyst Environ 267, 129–140.
  28. Takács, S.–Pék, Z.–Csányi, D.–Daood, H.G.–Szuvandzsiev, P.-Palotás, G.-Helyes, L. (2020): Influence of water stress levels on the yield and lycopene content of tomato. Water 12 (8), 2165. https://doi.org/10.3390/w12082165
  29. Takács, S.–Csengeri, E.–Pék, Z.–Bíró, T.–Szuvandzisev, P.–Palotás, G.–Helyes, L. (2021): Performance evaluation of AquaCrop model in processing tomato biomass, fruit yield and water stress indicator modelling. Water 13 (24), 3587. https://doi.org/10.3390/w13243587
  30. Turk, M.A.–Assaf, T.A.–Hameed, K.M.–Al-Tawaha, A.M. (2006): Significance of mycorrhizae. World J Agric Sci 2 (1), 16–20.
  31. Xu, L.–Li, T.–Wu, Z.–Feng, H.–Yu, M.–Zhang, X.–Chen, B. (2018): Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl Soil Ecol 125, 213–221.
  32. Zhou, D.–Huang, X.F.–Chaparro, J.M.–Badri, D.V.–Manter, D.K.–Vivanco, J.M.–Guo, J. (2016): Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant and Soil 401, 259–272.