Search

Published After
Published Before

Search Results

  • The effect of different herbicide on the number and activity of living microorganisms in soil
    76-82
    Views:
    228

    Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
    Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
    Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
    In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
    During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
    We can summarize our results as follows:
    • In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
    • Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
    • In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
    • Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
    • Different herbicides containing the same active compound had similar influences on soil microoorganisms.
    • A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    224

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Mycotoxin contamination in maize triggered by arthropod pests and the related protection possibilities
    59-64
    Views:
    226

    Mycotoxin contamination in harvested maize has increased in the last decades, which can be unequivocally back to the plant health troubles caused by global warming. The increasing of wounds in maize crops was occurred by climate change both on direct (hailstorm) and indirect
    (newly appeared pests) ways. In additional, the settling phytopathogenic microfungi on these plant wounds inflict serious human and animal health problems.
    The changing of Hungarian arthropod pests assemblages stand in the background of this dangerous nuisance complex. The spreading of European corn borer (Ostrinia nubilalis Hbn.) bivoltine ecotype as well as the newly appeared adventive species [cotton bollworm Helicoverpa armigera Hbn.), western corn rootworm (Diabrotica v. virgifera LeConte), fourspotted-sapbeetle (Glischrochilus quadrisignatus Say)] in Hungary can be responsible for this situation. In total, all technological elements, which obstruct the damage of these chewing mouthparts pests, as well as moderate the mechanical damage of maize, can be contribute to the reduction of both these phytopathogens injuries and mycotoxin contaminations.

  • Microgreen leaf vegetable production by different wavelengths
    79-84
    Views:
    368

    Microgreens are becoming more popular in gastronomy, especially as a salad ingredient. In this study, two plant species belonging to the cabbage family were grown as microgreens, namely red cabbage and broccoli. Three different light-emitting diodes (LEDs) were used in the experiment, blue, red, and combined (blue:red) lighting. The experiment was carried out by 118 µmol-2 s-1total Photosynthetic Photon Flux (PPF), LED lighting was applied for 16 hours a day. Blue light primarily stimulates leaf growth, while red light promotes flowering. In our experiment, blue and combined lighting favorably affected plant development, yield (~3000 g m-2), chlorophyll-a (~8.0 mg g-1), and carotenoid content (9.0 mg g-1). However, the red light resulted in reduced harvest yields (~2200 g m-2), chlorophyll-a (~6.0 mg g-1), and carotenoid content (~7.0 mg g-1). The development of red cabbage was favorably influenced by the blue spectrum, while the combined spectrum favorably influenced the development of broccoli.

  • The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region
    39-46
    Views:
    218

    Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
    The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
    agrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)
    and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
    sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
    and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
    one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
    infection rate was less after the second fungicide treatment.
    In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
    ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
    density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
    yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
    treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
    2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
    In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
    obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
    times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    209

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Comparison of Variability among Irradiated and Control Inbred Maize Lines via Morphological Descriptions and Some Quantitative Features
    70-73
    Views:
    171

    Knowledge of genetic diversity in breeding material is fundamental for hybrid selection programs and for germplasm preservation as well. Research has been done with nine irradiated (fast neutron) and four non-treated inbred lines. The aims of this study were (1) to investigate the degree of genetic variability detected with morphological description (based on CPVO TP/2/2) in these materials, (2) to compare the genetic changes among irradiated and non-irradiated maize inbred lines (based on some quantitative features). The irradiation did not change any of the characteristics clearly in positive or negative way, which can be related to the fact that the effect of induced mutation on genetic structure cannot be controlled. From the irradiated lines we have managed to select plants with earlier ripening times and better phenotypes. We could distinguish 3 main groups by the morphological features; these results match our expectations based on pedigree data. Markers distinguishable on the phenotypic level (e.g. antocyanin colouration, length of tassels) were significant in all lines.

  • Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
    75-79
    Views:
    290

    Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
    levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet. 

  • Phytopatological properties of symbiotic Rhizoctonia solani strains associated to orchids
    65-71
    Views:
    245

    The mycobiota of the Orchidarium of ELTE Botanical Garden (Budapest) has been studied applying aerobiological methods and isolating of tissue samples taken from 92 individuals of sixty orchid species. Among isolated basidiomycetaceous fungi 13 strains of Rhizoctonia solani were surviving in axenic culture. These symbiotic R. solani strains proved to be pathogenic on 24 cultivated plant species at varying degree. The symptoms of disease caused by R. solani strains isolated from orchids did not differ from that caused by reference strains. Three groups of strains could be separated regardless of their source or aggressivity. The host plants clustered into two groups, and their taxonomic position had no role in this respect. In general, we can assume that orchid associated Rhizoctonia strains are potential plant pathogens, and removed or withdrawn orchid stools should be treated as hazardous waste.

  • Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
    11-14
    Views:
    449

    In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.

    In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.

    In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.

    In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.

  • Calculating possibility of the leaf area index of apple and pear trees
    229-233
    Views:
    452

    A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and fast evaluate the leaf surface.

  • The efficacy of combining paraffin oil with conventional fungicide treatments against grape powdery mildew in Eger
    173-180
    Views:
    370

    We aimed to test the combination of paraffin oil (PFO) with regular fungicide treatment to assess its efficacy against grape powdery mildew (GPM) in a small spraying experiment on two Vitis vinifera L. cultivars (Chardonnay and Kékfrankos) with different susceptibility to Erysiphe necator. The visual symptoms of GPM on leaves and clusters were examined at three phenological states. The harvest yield was characterized by two methods, data were analyzed with one-way ANOVA and Tukey post-hoc test. Regular fungicide treatment (CT) and its combinations with PFO showed better results in both varieties to repress GPM in 2015 relative to sole PFO treatments. Mean values of combined treatments were often lower than CT but did not differ significantly from each other. The same was observed in 2016, despite the higher pressure of GPM, and missed the third survey. No significant differences were detected between treatments in yield. In contrast, the mean cluster weight of CT and combined treatments resulted in (insignificantly) higher values in each variety and year. In summary, the sole PFO showed some disease control capability as reported earlier, but this effect was greatly affected by the given vintage. Combining PFO with CT resulted in increased protection against GPM relative to the solely applied fungicides. However, this effect was not significant in all cases. It also depended on the vintage and cultivar characteristics. The beneficial impact of paraffin oil as an additive to CT may be due to the induction of plant stress responses and/or its ability to support the adherence and absorption of the combined agents.

  • Comparison of the geranium (Pelargonium) pathological results of 2016-2017
    123-125
    Views:
    263

    The research was carried out in a Gyenes Flower gardening between 2016 and 2017 in Kecskemét. The gardening was founded in 1978. Initially, the main plants were gerbera (Gerbera) and yucca (Yucca), later replaced by the geranium (Pelargonium) cultivation as a result of market demand. In horticulture, there are about than 80 variety geranium of the standing, running, semi-trailer types and English gnawing. The Pelargonium had different sizes and colors. The study was set up in 1,000–1,000 pieces of geraniums each year. The following pathogens have damaged the geranium stock: Botrytis cinerea, Pythium debaryanum, with a rare occurrence of Alternaria porri, Phytophthora cryptogea. The greatest destruction was caused by botrytis (Botrytis cinerea). In the first experimental year, 42% of the 1,000 geraniums tested were infected with fungal diseases (30% B. cinerea, 8% P. debaryanum, 4% other fungi). In 2017, fungal infections were detected on 380 geraniums in the 1,000 tested geraniums (290 Botrytis cinerea, 70 Pythium and 20 other fungal diseases). In addition to the use of fungicides, we increased the spatial position of geraniums, early irrigation and frequent ventilation to ensure successful control. By 2017, we were able to reduce the damage caused by pathogens by 4 percent.

  • Evaluation of reduced tillage technologies in corn production based on soil and crop analyses
    47-54
    Views:
    482

    Despite new cultivation methods, the proportion of conventionally cultivated land is still very high in Hungary.
    Although these technologies demand more time, labour and fuel, they are still attractive to users because they require less professional skill and simple machinery. In Hungary, conventional tillage methods usually lead to soil deterioration, soil compaction and a decrease in organic content. These side effects have caused gradually strengthening economic and environmental problems.
    The technologies for those plants which are dominant on Hungarian arable lands use (winter wheat, maize, sunflower and barley) need to be improved both in the interest of environmental protection and the reduction of cultivation costs.
    The Department of Land Use at Debrecen University is cooperating with KITE Sc. to carry out soil tillage  experiments at two pilot locations to prove tillage technologies already used in the USA.
    The aim of our examination is to adapt new technological developments and machinery, and to improve them on Hungarian soil for local environmental conditions. With these improved machines, the field growing of plants could be executed by less manipulation and better suited to economic and environmental needs. The most significant task is to investigate and improve the conventional cultivation replacing, new soil-protecting tillage technologies, and to apply no-till and mulch tillage systems.
    On the basis of the experiments’ survey data, we established that the looseness and moisture content of the soil using reduced tillage is more favourable than after using conventional technologies. The results of no-till and shallow spring tillage are behind those of winter plough or disk ripper cultivation in corn yield and production elements.
    To preserve moisture content in the soil, the ground clearing and sowing while simultaneously performing no-till method presents the most favourable results. The surplus moisture gained using no-till technology is equal to 40 mm precipitation.
    Regarding the yield of winter wheat we established that the tillage methods do not affect plant yield. Both disk ripper and conventional disc cultivation showed nearly the same harvest results (5.55 or 5.5 t/ha), where the difference is statistically hardly verifiable from the no-till method. From the individual production of corn and the number of plants planted in unit area,  calculated results prove that no significant difference can be detected between the production of winter plough and disk ripper technology. Although the yield achieved with the no-till method is less than with the previously mentioned technologies, the difference is only 9-10%. We received the lowest production at shallow spring tillage.
    Evaluations have shown a 1.1 t/ha (13%) difference in the yield of maize, between winter tillage and the disk ripper method, in this case the traditional method resulted in higher yield. In winter tillage, the yield of maize was 1.9-2.1 t/ha (23-25%) higher than in the case of direct sowing and cultivator treatments. No significant difference could be noted between the yields of direct sowing and cultivator treatments.
    Our research so far has proved the industrial application of reduced tillage methods in crop cultivation technologies.

  • The Influence of Cropyear on the Yield and Yield Safety of Different Sunflower Hybrids
    68-73
    Views:
    390

    The effectiveness of plant production is basically influenced by the ecological, biological and agricultural technical factors. There are many kinds of sunflower hybrids which differres in their adaptability. If we want to increase the efficiency of sunflower production, we have to design different technologies for each hybrid. In the last decade, the range of sunflower hybrids increased exceedingly. This is the reason why we have to do experiments with them and examine what the relationship among genotypes, the environment and the hybrids is.
    We made our experiments at the Látóképi Experimental Station of the University of Debrecen. We had 57 hybrids in 2001, and 44 in 2002 and 2003. We used only just those hybrids which were planted in every year.
    In 2001 the months at summer were hot and the distribution of rainfall was extreme. In the beginning of the year 2002, the summer was also hot. During the abscessing period, the temperature was under the 30 years average and the rainless period was typical. In 2003, the temperature was extrame and the rainfall during the growing season was dry. The yield average which was determined after the three years in the very early group averaged 3998,9 kg/ha. The best hybrids were the LG 5385 (4273,3 kg/ha) and the Magóg (4134,4 kg/ha). The early group’s average was 4129,4 kg/ha. The best hybrid was the Astor in the early group. The middle group’s average was 4169 kg/ha and the Zoltán had a better yield than average (4238 kg/ha). In the confectionary group the Iregi szürke csíkos (3579,9 kg/ha) reached the best yield and it is above the average to it’s group (3225 kg/ha).
    To estimate the results, we used factor analysis. Its results allow us to say that rainfall first and second part of June has a negative influence on yield. Aswith to the yield, yield safety is also important to know, which shows the adaptability of the hybrid.
    After examining the CV% in the three years we can say that the most stable hybrids were in the very early group Samanta (10,94 CV%) and the LG 5385 (12 CV%) In the early group, the most reliable hybrids were Altesse RM (6,9 CV%) and the Astor (10,8 CV%) and the end in the middle group the Lympil (10 CV%) and in the confectionary group the Birdy (9,8 CV%) and IS 8004 (12 CV%) were the best.
    After examining yield and yield safety, our conclusions are that in the Hajdúsági löszhát, the very early group LG 5385, early group Altesse RM, middle group Lympil and the parandial group IS 8004 hybrid had the highest yield and the best yield stability.

  • Isolation of promoters of tissue and ripening-specific strawberry genes by TAIL-PCR and bioinformatic characterization of the sequences
    91-99
    Views:
    148

    Isolation of ripening- and tissue-specific promoters has become a very important subject of the genetic regulation and plant physiology research in recent years. It could be possible to reveal the regulation of gene expression, and it may be a very useful approach in the biotechnology. In our work, we have isolated promoter regions of genes exhibiting ripening- and tissuespecific expression in our previous experiments, and the data were
    characterized by bioinformatic methods. In the sequence of the ripening-specific Spatula and ACC-oxidase promoters (ACCoxidase is one of the key-enzymes of ethylene biosynthesis, directly related to the process of ripening); we could identify auxin- and ethylene-related cis-regulatory elements. This suggests that there is an interaction between ripening and ethylene-synthesis, in case of non-climacteric strawberry, too. We investigated the promoter regions of three green receptacle-specific genes (putative nitrilaselike protein, Ring transcription factor and an aquaporin protein)
    and we could identify several regulatory elements, which refer to hormonal regulation. Additionally, we could find several cisacting elements which associated with stress-responsiveness and endospermium-specific expression. 

  • Changes in fatty acid composition of pork rich in conjugated linoleic acid frying in different kind of fats
    31-35
    Views:
    256

    In 1990ys antiatherogen, antioxidant and anticarcinogen effect of conjugated linolacids (CLA) was detected. From this reasons, our aims in this study were producing pork rich in CLA and studying the change of fatty acid composition of the produced pork cooked different kind of fats. For frying palm and sunflower oil and swine fat were used. Thigh was cutted for 100 g pieces. Meat pieces were fried at 160 °C for 1 and 8 minutes. Estimation of frying data it was determined that higher (0.13%) CLA content of pork was spoiled (60-70%) except in case of swine fat cooking,
    because it is extremly sensitive for oxidation and heating. Swine fat has higher (0.09%) CLA content than plant oil, protecting the meat’s original CLA content. Cooking in swine fat did not have significant effect on fatty acid composition of meat. Low level of palmitic acid contect of sunflower oil (6.40%) decreased for half part of palmitic acid content of pork (24.13%) and it produced cooked meat with decreased oil acid content. Contrary of above, linoleic acid content of fried meat was increased in different folds as compared to crude pork. If it was fried in sunflower oil with high level linoleic acid increased (51.52%) the linoleic acid content in fried pork. The linoleic acid content of the high level CLA pork increased four times (48.59%) to the crude meat (16.59% and 12.32%). The high palmitic acid content of palm fat (41.54%) increased by 60% the palmitic acid content in fried pork, low stearic acid (4.44%) and linoleic acid content (10.56%) decreased the stearic and linoleic acid content of crude meat.

  • Investigation of the decomposition and leaching dynamics of Salix, Populus and mixed leaves in the area of Lake Balaton and Kis-Balaton Wetland
    119-124
    Views:
    315

    In lakes and wetlands, leaf litter input from the coastal vegetation represents a major nutrient load and plays a basic structural and functional role in several ecosystems. In Hungary, at the banks of lakes and wetlands, Salix and Populus trees are the most common species. In an experiment in Lake Balaton and Kis-Balaton Wetland between 16 November 2017 to and 3 June 2018, the decomposition rates and leaching dynamics of Salix, Populus and mixed leaves (50% Salix and 50% Populus) were investigated. Total nitrogen and phosphorus content of biomass samples were measured at the beginning and end of the experiment for the leaching dynamics experiment. We found that litter mass losses (Salix, Populus and mixed leaves) were not significantly different between the two mesh size litterbags and between Lake Balaton and Kis-Balaton Wetland. Different amounts of the total nitrogen and phosphorus leaching from Salix, Populus and mixed leaves were detected. The total nitrogen contents of the plant samples were around 8-18% at the end of the investigated period. Slightly higher values were measured compared to phosphorous (27-29%).

  • Sensitivity of methods for estimating reference evapotranspiration
    51-56
    Views:
    286

    The knowledge of the evapotranspiration of natural ecosystems and plant populations is of fundamental importance in several branches of science, research topics and practical uses. Nevertheless, the harmonization of the large number of methods and the changing user needs often causes problems. Sensitivity analysis of 10 ET0 estimation models and model variants was performed. Magnitude of the obtained outputs and the changes triggered by each atmospheric parameter were evaluated. The objective of the analyses was to get to know the sensitivity of the different models and to select the most accurate and the most suitable ones for adaptation to local circumstances. Therefore, it becomes possible to achieve as high accuracy as possible in applications which need ET0 estimation.

  • Examination of nutrient reaction of winter wheat after sunflower forecrop
    9-13
    Views:
    239

    We tested the fertilizer reaction of four different winter wheat varieties in three different crop years, on chernozem soil, in long-term experiment. We examined the optimum fertilizer requirements and the maximum yield of the varieties. According to our results there were significant differences among the years: the yield of the winter wheat varieties changed between 1.4–6.1 t ha-1 in 2013, 3.8–8.6 t ha-1 in 2014 and 3.2–8.6 t ha-1 in 2015. The yield increasing effect of fertilization was significantly different in the tested years. The optimum level of fertilization was determined by, besides the genetic differences among the varieties, the crop year and the extent of fertilization. In milder winter months, due to the higher average temperatures, yields of winter wheat increased compared to an average crop year.

  • Physiological traits and yield of three soybean (Glycine max (L.) Merr.) genotypes as affected by water deficiency
    11-15
    Views:
    419

    Soybean is a very important legume; it has the highest protein content, and it is a very important source of vegetable oil. Soybean is droughtsusceptible, and drought is one of the major abiotic stresses that has been increasing over the past decades as a result of the global climatic changes. To evaluate the influence of drought stress, three soybean genotypes were grown under rainfed conditions, and compared to irrigated controls. The obtained results showed that the chlorophyll content, leaf area index and plant height decreased under drought stress conditions, which led to noticeable and sometimes significant yield reduction. Our results suggest more specific studies on the physiological changes of the local soybean genotypes under drought stress to better select the adopted ones.

  • Efficiency of Fertilization in Sustainable Wheat Production
    59-64
    Views:
    293

    In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
    In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
    The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
    Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
    Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects.

  • Phenometric studies on stalk juice and sugar contents of silo sorghum types
    41-49
    Views:
    228

    Bioenergies (among them e.g. bioalcohol) can be solutions for the replacement of fossil fuels. For its production, plants with high sugar or starch content can be used. Juice pressed from the stalk of sugar sorghum has high sugar content (14-17%) that makes it suitable for bioethanol production. During our experiment, we examined 53 restorer male lines; among them 22 were silo type sugar sorghum. We studied the following traits: plant height, breeding time, level of foliation, stalk diameter, characteristics of stalk medulla, juice content of stalk, sugar content of stalk juice. According to examined characteristics, we selected six restorer male lines for studies in the forthcoming years: RL 1, RL 2, RL 3, RL 4, RL 5, RL 9, RL 12, RL 15, RL 18. Their stalk medullas were wet, stalk diameters were medium-thick, sugar contents of juices varied between 17 and 24% at the end of milk mature. Harvest was made in September, they can be classified into early maturation group. Male sterile female lines were the following: SL 1, SL 2, SL 3, SL 4, SL 5. The maintainer male lines were: CL 1, CL 2, CL 3, CL 4, CL 5. In Hungary, there are only a few male sterile female
    lines, so we will use these lines for hybrid production during the next years. 

  • Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
    35-39
    Views:
    168

    Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
    application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

  • Q-PCR analysis of the resistance of Hungarian Botrytis cinerea isolates toward azoxystrobin
    41-44
    Views:
    235

    The genes being in the mitochondrial DNA primarily encode the enzymes of cellular respiration. Fungicides belonging to the family of quinol oxidase inhibitors (QoIs) play on important role in the protection against several plant diseases caused by fungi. These fungicides bind to the cytochrome bc1 complex so they block electron transport between cytochrome b and cytochrome c1. This way these fungicides inhibit the ATP synthesis consequently they inhibit the mitochondrial respiration. The QoI resistance has two mechanisms. One of them is the point mutation of the cytochrome b gene (CYTB), e.g. the substitution of a single glycine by alanine at position 143 results in high-resistance. The other is the cyanide-resistant alternative respiration sustained by the alternative oxidase.
    In a cell there are several mitochondria. The phenomenon when the genomes of all mitochondria in the cell are identical is called homoplazmy. If in the cell there is wild and mutant mitochondrial DNA this is called heteroplasmy. Whether the mutation in the mitochondria causes fenotypical diversity or does not depend on the dose, i.e. it depends on the percentage of the changed mitochondrials. During our work we investigated Botrytis cinerea single spore isolates which have been collected in 2008-2009 on different host plants. Our goal was to decide whether heteroplasmy influences the level of resistance. We managed to detect the change of the level of heteroplasmy, so the change the level of the resistance due to the treatment with fungicide.