Search

Published After
Published Before

Search Results

  • The effect of different herbicide on the number and activity of living microorganisms in soil
    76-82
    Views:
    119

    Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
    Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
    Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
    In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
    During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
    We can summarize our results as follows:
    • In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
    • Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
    • In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
    • Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
    • Different herbicides containing the same active compound had similar influences on soil microoorganisms.
    • A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    99

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Mycotoxin contamination in maize triggered by arthropod pests and the related protection possibilities
    59-64
    Views:
    140

    Mycotoxin contamination in harvested maize has increased in the last decades, which can be unequivocally back to the plant health troubles caused by global warming. The increasing of wounds in maize crops was occurred by climate change both on direct (hailstorm) and indirect
    (newly appeared pests) ways. In additional, the settling phytopathogenic microfungi on these plant wounds inflict serious human and animal health problems.
    The changing of Hungarian arthropod pests assemblages stand in the background of this dangerous nuisance complex. The spreading of European corn borer (Ostrinia nubilalis Hbn.) bivoltine ecotype as well as the newly appeared adventive species [cotton bollworm Helicoverpa armigera Hbn.), western corn rootworm (Diabrotica v. virgifera LeConte), fourspotted-sapbeetle (Glischrochilus quadrisignatus Say)] in Hungary can be responsible for this situation. In total, all technological elements, which obstruct the damage of these chewing mouthparts pests, as well as moderate the mechanical damage of maize, can be contribute to the reduction of both these phytopathogens injuries and mycotoxin contaminations.

  • Microgreen leaf vegetable production by different wavelengths
    79-84
    Views:
    147

    Microgreens are becoming more popular in gastronomy, especially as a salad ingredient. In this study, two plant species belonging to the cabbage family were grown as microgreens, namely red cabbage and broccoli. Three different light-emitting diodes (LEDs) were used in the experiment, blue, red, and combined (blue:red) lighting. The experiment was carried out by 118 µmol-2 s-1total Photosynthetic Photon Flux (PPF), LED lighting was applied for 16 hours a day. Blue light primarily stimulates leaf growth, while red light promotes flowering. In our experiment, blue and combined lighting favorably affected plant development, yield (~3000 g m-2), chlorophyll-a (~8.0 mg g-1), and carotenoid content (9.0 mg g-1). However, the red light resulted in reduced harvest yields (~2200 g m-2), chlorophyll-a (~6.0 mg g-1), and carotenoid content (~7.0 mg g-1). The development of red cabbage was favorably influenced by the blue spectrum, while the combined spectrum favorably influenced the development of broccoli.

  • The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region
    39-46
    Views:
    79

    Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
    The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
    agrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)
    and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
    sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
    and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
    one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
    infection rate was less after the second fungicide treatment.
    In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
    ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
    density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
    yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
    treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
    2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
    In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
    obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
    times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    126

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Comparison of Variability among Irradiated and Control Inbred Maize Lines via Morphological Descriptions and Some Quantitative Features
    70-73
    Views:
    60

    Knowledge of genetic diversity in breeding material is fundamental for hybrid selection programs and for germplasm preservation as well. Research has been done with nine irradiated (fast neutron) and four non-treated inbred lines. The aims of this study were (1) to investigate the degree of genetic variability detected with morphological description (based on CPVO TP/2/2) in these materials, (2) to compare the genetic changes among irradiated and non-irradiated maize inbred lines (based on some quantitative features). The irradiation did not change any of the characteristics clearly in positive or negative way, which can be related to the fact that the effect of induced mutation on genetic structure cannot be controlled. From the irradiated lines we have managed to select plants with earlier ripening times and better phenotypes. We could distinguish 3 main groups by the morphological features; these results match our expectations based on pedigree data. Markers distinguishable on the phenotypic level (e.g. antocyanin colouration, length of tassels) were significant in all lines.

  • Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
    75-79
    Views:
    123

    Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
    levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet. 

  • Phytopatological properties of symbiotic Rhizoctonia solani strains associated to orchids
    65-71
    Views:
    143

    The mycobiota of the Orchidarium of ELTE Botanical Garden (Budapest) has been studied applying aerobiological methods and isolating of tissue samples taken from 92 individuals of sixty orchid species. Among isolated basidiomycetaceous fungi 13 strains of Rhizoctonia solani were surviving in axenic culture. These symbiotic R. solani strains proved to be pathogenic on 24 cultivated plant species at varying degree. The symptoms of disease caused by R. solani strains isolated from orchids did not differ from that caused by reference strains. Three groups of strains could be separated regardless of their source or aggressivity. The host plants clustered into two groups, and their taxonomic position had no role in this respect. In general, we can assume that orchid associated Rhizoctonia strains are potential plant pathogens, and removed or withdrawn orchid stools should be treated as hazardous waste.

  • Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
    11-14
    Views:
    183

    In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.

    In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.

    In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.

    In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.

  • Calculating possibility of the leaf area index of apple and pear trees
    229-233
    Views:
    110

    A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and fast evaluate the leaf surface.

  • Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
    15-22
    Views:
    251

    Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

    Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

    Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

  • Evaluation of water balance in apple and pear trees
    193-198
    Views:
    102

    A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor
    of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates
    the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not
    an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree
    (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and
    fast evaluate the leaf surface. Furthermore we defined from the water balance of compensation lysimeters the cumulative transpiration of
    fruit trees and the efficiency of water use of trees.

  • Challenges and limtations of site specific crop production applications of wheat and maize
    101-104
    Views:
    120

    The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.

  • Fusarium culmorum isolated from rhizosphere of wooly cupgrass (Eriochloa villosa) in Debrecen (East Hungary)
    93-96
    Views:
    143

    Wooly cupgrass (Eriochloa villosa) is an East-Asian originated weed species and it has been spreaded worldwide by now. The first occurrence of this species in Hungary was observed and published in 2008 nearby Gesztely village (Borsod-Abaúj-Zemplén county, North-East Hungary) than in the summer of 2011 a significant population was discovered next to Debrecen city (Hajdú-Bihar county, East Hungary).

    In 2013 this weed was also reported from Szentborbás village, Somogy county (South-West Hungary). These observations of spreading and its biological features (production of stolons and large number of seeds, moreover herbicide tolerance) indicate that wooly cupgrass (E. villosa) has a great potential of invasiveness, so it may become a hazardous weed not only in Hungary but in all over the world.

    The objective of this study was to identify the fungus which was isolated from wooly cupgrass (E. villosa) root residue samples which were collected after maize harvesting on arable land in late autumn, near Debrecen. The identification of the fungus based on morphological characters of colonies and the features of conidia developed on potato dextrose agar (PDA) plates. After the examination of axenic culture we revealed that the fungus from rhizosphere of wooly cupgrass was Fusarium culmorum. Pathogenicity and/or endophytic relationship between the fungus and wooly cupgrass is still uncertain so pathogenicity tests and reisolations from plants are in progress.

  • Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition
    111-121
    Views:
    107

    The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.

  • Exogenous salicylic acid treatments enhance tolerance to salinity of wheat (Triticum aestivum) plantlets
    34-38
    Views:
    118

    Salt stress, an abiotic stress, determines modifications of some biochemical indicators, like, antioxidant enzymes, proline (amino acid
    accumulate in higher plants under salinity stress) content, and some physiological processes including: plant growth and development. In
    this paper we studied the influence of exogenous treatment of wheat seeds, with 0.1 mM salicylic acid (SA) solution, in the plant response to
    salt stress. The treatment was applied by presoaking the seeds in the treatment solution for 12 hours before germination. The results showed
    that exogenous 0.1 mM SA solution, administrated to the wheat cariopses significantly ameliorated the negative effect of salt stress in first
    week of germination in laboratory conditions.

  • Slight damage of the great green bush-cricket (Tettigonia viridissima) (Orthoptera: Tettigoniidae) in some Hungarian maize fields
    65-70
    Views:
    215

    Characteristic cricket damage was observed in two maize fields in northern Hungary, at Máriabesnyő, a district of Gödöllő. The damage level of the two fields did not differ significantly and continual monitoring of field1 showed also a stable infestation level. T. viridissima nymphs and a female were found and observed as feeding on maize plants. The crickets must have disappeared after 18.07. because no more fresh damage was observed after this date. The chewing’s number about on one and two % of the examined plants amounted one and six a plant and their size was between one and eight cm2. This infestation was quite little and might have caused apparently no yield loss. Compared this damage of T. viridissima with former Hungarian experience, this was the usual negligible damage despite the explicit draught in July and August 2015. As regards the global warming, orthopteran damage may be more obvious in the future.

  • Effect of ethephon levels and amino acids on the growth characteristics of oat crop
    57-61
    Views:
    54

    A field experiment was conducted during the 2021-2022 season in an agricultural field in Basra Governorate. The aim was to study the effect of spraying ethephon and amino acids on the growth characteristics of oats (Avena sativa L.) Shifa cultivar. The experiment involved three levels of ethephon (0, 0.240, and 0.600 kg ha-1), represented by the symbols E0, E1, and E2 respectively, and two spray levels of amino acids (0 and 5 ml L-1), represented by the symbols A0 and A1. A factorial experiment was applied using the R.C.B.D (randomized complete block design) in a split plots arrangement with three replications. The results revealed significant differences in the levels of ethephon for most of the studied characteristics. The level of 0.240 kg ha-1 (E1) was superior in terms of chlorophyll content, crop growth rate, and the number of tillers, with increases of 39.07%, 39.26%, and 16.36%, respectively, compared to the control treatment (E0). Regarding the amino acids treatments, spraying at a concentration of 5 ml L-1 (A1) demonstrated significant superiority, resulting in the highest plant height, flag leaf area, chlorophyll content, and crop growth rate. This study concludes that amino acids play a crucial role in plant growth, and the combination of 5 ml L-1 amino acids with 0.240 kg ha-1 of ethephon significantly increased chlorophyll content and crop growth rate.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    86

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Nitrogen Supplying Capacity of Brown Forest Soil under Different Cropping Practices and 0.01 M CaCl2 Soluble Organic Nitrogen
    17-23
    Views:
    86

    The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In this respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.
    Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.
    The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.
    The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility.

  • Effect of season and sowing time on the moisture loss dynamics and yield of maize
    255-265
    Views:
    149

    The effect of sowing date on maize development and yield was studied in field experiments. The experiment was set up at the experimental garden of the University of Debrecen Centre of Agricultural Sciences Faculty of Agriculture, Department of Plant Sciences in 2005 and 2006 on calcareous chernozem soil. Six hybrids with different genetic characteristics and vegetation period were tested (Sze 269, DK 440, PR37D25, NK Cisko, Mv Maraton, PR34B97) at three different sowing dates.
    2005 was a very wet year. The amount of precipitation in the vegetation period was about 150 mm higher than the average of 30 years. No significant differences were observed in temperature. However, the number of sunny hours was much lower during the summer than as usual. This had an influence on yields.
    In 2006, there was no risk of inland water in spite of the large amount of precipitation at the beginning of the year. The amount of water available for plants was satisfactory during the season due to the favorable amount of precipitation. Therefore, plants suffered less from the heat in July. However, hail on 22 July caused significant damage. The number of sunny hours in the summer was high enough. The warm, dry autumn helped the water release of plants.
    In 2005, the results of the third sowing date could not be evaluated due to the large number of missing plants. The yield of hybrids ranged between 12-14 t/ha for the first sowing date. For the second sowing date, yields ranged between wider boundaries. The hybrid PR37D25 has a very high yield in the case of the second sowing date, and its seed moisture content was favorably low. The yield of hybrid PR34B97 was the lowest at the later sowing date, the prime reason of this was damage caused by Diabrotica virgifera. The seed moisture content at harvest varied between 16-24% for the first sowing date. In the case of the second sowing date, higher values were measured. Hybrids Sze 269 and NK Cisko had favorable water release characteristics. The maximum value of leaf area index was the best in the case of the first sowing date (5-5.5 m2/m2).
    In 2006, yields for the first sowing date ranged between 8-10 t/ha. At the second sowing date, more favorable results were obtained. The reason for this is probably that hail caused a higher damage in hybrids with the early sowing date. Plant stock with later sowing date could recover more successfully. Hybrid PR37D25 had very high yields for the second and third sowing dates. The high-yielding hybrid PR34B97 also had high yield, but this was accompanied by higher seed moisture content. Due to the warm, sunny autumn weather, the hybrids had good water-release dynamics and were harvested with a lower seed moisture content than in the previous year. For the first sowing date, the seed moisture content was around 13-14% except for hybrid PR34B97. For the second and third sowing dates, higher values were observed. Leaf area index was significantly reduced in August for all three hybrids due to the hail in July. For the first two sowing dates, the leaves of hybrid Sze 269 were the first to dry similarly to the previous year.
    Year had a strong effect on the results in both years.

  • Violation prooxidative-antioxidant stability at maize shoots at different level of accumulation of cadmium and nickel
    89-94
    Views:
    66

    Joint influence of cadmium and nickel was investigated on the feature of their accumulation by the vegetative organs of 10-days' old maize shoots. It was established that most intensively noted metals are taken in by the roots of shoots in the first 7 hours stressing influencing, while in leaves they appear only after a 7-hour long exposition. It was stated that the absorption process of the noted metals by a root system is carried by two-phase character. The indexes of inner-tissue contamination are calculated. Activating by the cadmium and nickel ions of lipid peroxidation as marker of the stressing influencing, and also was shown the proper increase of intensity of functioning of ascorbate peroxidase as the antioxidant enzyme protection of cell.

  • Using crop analysis in the precision nutrient supply system of maize
    183-186
    Views:
    87

    The effect of the N, P and K supplies of soil on the grain yield and N, P and K status of maize was studied in a long-term mineral fertilisation experiment between 2001 and 2008 and nutrient supply limit values were determined to plant analysis. Based on the interaction between the N concentrtion of maize leaves measured at the beginnig of tasseling and grain yield, the satisfactory limit value of N supply to reach 10–14 t ha-1 yield was between 2.0–4.0%. Leaf analysis at the beginning of tasselling indicated that better P and K supplies were associated with a higher P and K concentration in the maize leaves. Correlation analysis on the P concentration of the maize leaves and the grain yield showed that at a grain yield level of 10–14 t ha-1 a P concentration of 0.20–0.37% represented a satisfactory P supply level. The satisfactory K supply limit value to reach 10–14
    t ha-1 grain yield was 1.5–2.6%.

  • Describing Fusarium diseases on maize in 2013 using data from several production sites
    60-64
    Views:
    137

    As in other parts of the world, the frequency of weather extremes has increased greatly in Hungary in recent years. This means that maize production is faced with greater risks from all aspects: nutrient replacement, irrigation, plant protection. This is especially true of fusarium diseases. In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. They infect the ears, which – besides reducing the yield – poses considerable risk to both human and animal health due to the mycotoxins produced by them. Depending on which Fusarium species are dominant at a given location, changes can be expected in the level of infection and in the quality deterioration caused by the mycotoxins they produce. Fusarium spp. not only damages the maize ears but when pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harvested. The degree of infection is fundamentally determined by the resistance traits of the maize hybrids, but also a great role in that region Fusarium species composition as well.