Search
Search Results
-
The effect of grazing of various cattle breeds on botanical composition of low-lying pasture in Hortobágy
57-63Views:210Coenological surveys were conducted in the Hortobágy National Park (Pap-ere and Zám-puszta) in May 2015 and 2016. During the tests,a total of 40 permanent plots were analyzed on grasslands grazed by extensive cattle (Hungarian Grey) and mixed genotype intensive cattle. The presence of plant species, percentages of total coverage of species and vegetation cover were recorded. Two habitat types were chosen according to their moisture content: wet salt marsh meadow (Bolboschoenetum maritimi) and drier salt meadows (Beckmannion eruciformis).
We compared the impact of increased number of animals (2016 years) and the low number of animals (2015 years, initial state) and the grazing exclusion on vegetations.
We tested: (i) what is the impact of grazing on the vegetation, (ii) how do species composition and vegetation charachteristics differ in the two habitat types (iii) and is there a difference in the impact of different cattle breeds (Hungarian gray, intensive beef cattle) grazing on the grasslands species composition? During the investigation we found, (i) that the greatest number of species was recorded in 2015, on the area that received moderate to intensive grazing (14.3 species per m2). Somewhat the number of species was reduced in 2016 due to more intensive grazing. The control group had the lowest number of species (11.7 species per m2). The undergrass and legumes cover significantly increased on intensive grazed lands. (ii) Our results indicate that the effects of different grazing differ in the two studied habitat types. On the drier grasslands greater number of species were found (16.2 species per m2), oppositely to the wet grassland (11.2 species per m2). The cover of the undergrasses was higher in the drier habitat than in the wet. (iii) The extensive beef cattle left a bigger number of species (16 species per m2) than the intensive beef cattle (11.4 species per m2). The grass cover was more intense on areas grazed by intensive cattle. The absolute and potential weeds cover showed a higher value on areas grazed by Hungarian Grey. Our two-year results suggest that grazing by both extensive and intensive cattle breeds can be a proper tool for the conservation management of alkali grasslands. -
Application of microsatellite fingerprints for pedigree analysis of Hungaricum grapevine varieties
71-77Views:143the Carpathian Basin were involved into our examination, which aimed at genotyping their accessions. DNA fingerprints of 101 varieties were determined with 6 microsatellite markers till 2005, resulting in successful discrimination of the accessions. Based on these results for pedigree determination, even more cultivars and primers were involved into the analyses. For studying the origin of Csabagyöngye and for proving the parent-progeny relations of Irsai Olivér and Mátrai muskotály, 19 microsatellite markers were applied, while 11 were selected for tracing the origin of Királyleányka. Genetic distances between the varieties were estimated with cluster analysis and demonstrated by dendrogram, proving that the varieties can be discriminated from each other based on the microsatellite allele sizes. Pedigree of Irsai Olivér and Mátrai muskotály has been confirmed by microsatellite allele size results, searching for the parents of Csabagyöngye and Királyleányka is in progress, since the molecular-marker based pedigree does not correspond with the putative origin of these cultivars. Our results excluded progeny-parent relationships in the
Csabagyöngye-Bronnerstraube-Muscat ottonel (Ottonel muskotály) and the Királyleányka-Kövérszőlő combinations. -
Review of research on salt-affected soils in the Debrecen agricultural high educational institutions, with special focus on the mapping of Hortobágy
471-484Views:80The history of the research of Debrecen scholars on salt-affected soils of Hortobágy and the region is very rich and diverse.
Focusing on mapping, the following stages can be distinguished, indicating the completeness of the maps and the purpose of the performed work
− First, quantitative maps (Arany, 1926) for the utilization of the lands at 1:75,000 (Figure 1).
− Second, quantitative map (Kreybig, 1943) for the utilization of the lands at 1:25,000.
− Third, category map (Kreybig et al., 1935) testing the suitability of the classification system at :75,000.
− Fourth, partial category map (Szabolcs, 1954), showing the reasons of unsuccessful management at 1:10,000.
− Fifth, partial quantitative map (Csillag et al., 1996), showing the utility of digital sampling at 1:25,000.
− Sixth, partial quantitative map (Tamás and Lénárt, 2006), showing the capacity of multispectral remote imagery at 1:100.
− Seventh, partial quantitative map (Douaik et al., 2006), showing the usefulness of geostatistical mapping at 1:10,000.
− Eight, national quantitative maps (Pásztor et al., 2016), showing the applicability of geostatistics for administrative purposes at 1:10,000.
− Ninth, partial quantitative/category map (authors, 2019), finding the optimal methods at 1:10,000.