Published After
Published Before

Search Results

  • Analysis of the photosynthetic parameters, the yield and the quality of winter wheat

    The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and
    varieties) suitable for the region and the site. The aim of our work is to parametrize the plant assimilation, its intensity, dynamics and the
    most important characteristics and the relationships to the quality in winter wheat trials. The measurements were carried out at the research
    site of the University of Debrecen in small parcel experiments. We measured the leaf net CO2 assimilation rate, stomatal conductance,
    intercellular CO2 level, the transpiration, the leaf temperature and the air temperature by the LICOR LI-6400 portable photosynthesis
    system in field trials on the nutrient supply. The soil of the experimental area is calciferous chernozem with favorable water regime.
    We have examined the photosynthetic activity, the productivity and yield stability of winter wheat varieties. We have compared the yield
    results, at similar agrotechnical conditions in seven cropyears. We also determined the quality parameters of the winter wheat varieties.
    Then we valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the
    connections between assimilation parameters, the yield stability and quality parameters of wheat varieties.

  • Characteristics of Land Use and Plant Production in Transcarpathia

    The character of plant cultivation and animal husbandry in different parts of Transcarpathia, are mostly determined by the location of a given region. Usually, four zones are delineated: 1. lowlands; 2. foothills and volcanic remains zone; 3. inter-mountainous subsidence and deep valley; 4. mountain zone.
    In county this zone divides quite visibly. By studying the soil, climatic conditions and plants, it is not difficult to see that the vertical zones play a major role in their characteristics and formations. If we go from lower to higher elevations, we can observe the qualitative difference in the environment and, of course, in the character of agriculture.
    Environmental pollution is a global problem of our age. In agriculture, the most important thing is to preserve the ideas of sustainable development, because only these can ensure the protection of production resources, which will ensure the continuous production of agricultural products. Present environmental conditions pose a more problematic challenge to agriculture.

  • Nutrient Uptake of Miscanthus in vitro Cultures

    The large biomass production and the low necessary input fertilizer make Miscanthus an interesting, potential non-food crop with broad applications, e.g. for fuel and energy, for thatching, fiber production, for the paper and car industries, as well as for ethanol production.
    Axillary buds of Miscanthus x giganteus were placed on a shoot inducing nutrient solution (modified Murashige and Skoog, 1962), basic medium supplemented with 0,3 mg l-1 6-Benzylaminopurin. After 40 days of culturing, the axillary buds produced three times more shoots than could normally be harvested. The nutrient content (N, P, K, Ca, Mg) was measured several times during culturing. The results showed that, after 35 days, nitrogen and phosphate were nearly completely taken up. From that time, shoot growth was not observed.
    After shoot propagation, the plants were transfered into a nutrient solution for root formation (modified Murashige and Skoog, 1962), basic medium supplemented with 0,5 mg l-1 Indole- 3-Butyric acid, and could be potted in soil after about 14 days.

  • Change of cultivation parameters of asparagus (Asparagus officinalis L.) on different nutrient systems

    The experiments were conducted at the Research Institute of Nyíregyháza, Research Institutes and Study Farm, Centre for Agricultural Sciences, University of Debrecen. We have studied the shoot number, plant height and fold thickness os asparagus for 3 years. We have set a fertilization experiment on 1500 m2 of plantations in 2013. We applied fertilizer, manure and sheet manure compost. The set yield we achieved by using fertilizer treatment. The Vitalim produced the largest crop, then the Cumulus and the lowest yield Grolim. We was produced by highest green mass was observed in Vitalim and Cumulus hybrids in each year. The Grolim hybrid produced the smallest shoot and plant height but the fold thickness was longer in the other two hybrids. Overall, the Vitalim hybrid has the best production parameters and each season.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • Study of some physiologic properties of different genotype sweet corn hybrids

    The effect of nutrient-supply (control, N120+PK) and two different genotypes on the physiologic properties of sweet corn has been investigated in the crop-year of 2011 on chernozem soil in the Hajdúság region. The experiments were carried out at the Experimental Station of the University of Debrecen in Debrecen-Látókép. The experiment was sewn in two different sowing times: the 21st April can be considered as an early, while the 19th May as a late sowing time. The two involved hybrids were Jumbo and Enterprise. The applied plant density was 65 000 plants per hectare.
    Our aim with this experiment was to study the plant production, just as the main affecting factors of its development and dynamics, like nutrient-supply and genotypes. We aimed to study and analyse the relationships between these factors and plant production. In this study following parameters were measured and calculated: photosynthetic activity, chlorophyll-content (SPAD-value), leaf area index (LAI) and leaf area duration (LAD). Regarding the analysis of photosynthetic activity values no obvious relationship between the measured values and the applied hybrids, just as nutrient-supply has been revealed. 
    Analysing the SPAD-values it can be stated that the chlorophyll-content of the measured leaves showed an increasing tendency due to the nutrient-supply. The highest values have been measured in the intensive cob development phase of the early sowing time plots.
    Regarding the LAI-values we have found significant differences between the fertilizer treatments in both sowing time treatments. In case of the leaf area duration values – that is derived from the LAI values – nutrient-supply has positively affected the duration of the assimilation area.

  • Food safety of plant origin food

    Expectation regarding changes related to food production, transportation, distribution and marketing have changed considerably in several regions of the world over the past decades. It is especially true for highly industrialized countries where not only the food security is important but the food safety is essential too. The concentration of production – processing – distribution involves the danger on the one hand products of unsuitable quality from point of view of nutritional physiology and the other hand ones that may contain substances harmful to human health will become widespread among consumers. We investigated the heavy metal, pesticide remains and mycotoxin content of different plant products.

  • Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype

    Power-to-gas (P2G) is referred to technologies that convert carbon dioxide into methane. Both bio- and chemical catalysts may be used for conversion purposes. One of the most disruptive biotechnologies was developed by the University of Chicago (IL) (publication number: EP2661511B1), using a robust, highly selective, patented strain of Archaea. Electrochaea GmbH has developed an innovative bench-scale P2G prototype unit, which uses this highly efficient Archaea strain, specialized components and specifically developed control strategies. The structure and the components of the prototype are equivalent with the functional parts of the currently largest commercial scale biomethanation BioCat plant located in Avedøre, Denmark ( Power-to-Gas Hungary Kft. has committed to further develop this innovative technology. The first steps of this development have been taken by operating the benchscale unit and analyzing the data of the operating periods.

    The prototype is operated based on weekly campaigns. During continuous operation, H2O is generated as a by-product of methane. Therefore, approximately 200 ml of biocatalyst is discharged each day and concentrated media containing macro and micronutrients are injected into the reactor to maintain media composition. The laboratory staff records all gas composition data each morning. The gas composition is measured every 12 minutes by an Awite AwiFlex Cool+ gas analyzer. Within this article, we analyze the collected datasets containing more than 12 000 records and present the first practical experiences of the operations of the innovative power-to-gas bench-scale prototype.

    The analysis of the collected gas composition data of the product gas already provides important data for modelling the commercial-scaled processes. The average value of VVD was about 40 l/l/d in the period under review. Further increase of the methane content can be achieved by introduction of higher mixing energy and by increasing pressure levels in the bioreactor (as demonstrated in the BioCat plant – data not shown here) – both of which are strategies envisioned for the commercial plant. In routine activities (turn on, shut down, continuous operation) we could verify the high robustness of the biocatalyst and the base connection between the registered datasets and performed test results.

  • Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes

    From the aspect of the efficiency of maize production harvest grain moisture content shall be considered beside the amount of harvested grain yield. Hybrids with different genotypes and vegetation period length lose their moisture content different that is affected by row spacing and plant density – among agrotechnical production factors – depending on the given crop year. In the present research work three crop years with different weather conditions were studied (2013, 2014, and 2015). The small-plot field experiment was set up at the Látókép Field Research Centre of the University of Debrecen, Centre for Agricultural Sciences with four replications on a chernozem soil type. The effect of three factors was analysed in the experiment on yield amount and its moisture content. Factors were row spacing (45 and 76 cm), plant density (50, 70 and 90 thousand plants ha-1), while hybrids were of very early (Sarolta: FAO 290), early (DKC 4014: FAO 320, P 9175: FAO 330, P 9494: FAO 390) and medium (SY Afinity: FAO 470) ripening.

    In the crop year of 2013 the highest yield was produced – regarding the average of the hybrids – by the application of a row spacing of 45 cm (4.5%, 673 kg ha-1), however there was no significant difference between the yield of the populations of different row spacings. Significant difference (14.9%, 1751 kg ha-1; 6.3%, 583 kg ha-1) could be found in case of yield between different row spacing applications in 2014 and 2015. The effect of insufficiently distributed low amount of precipitation and lasting heat days in 2015 could be revealed in yield amounts and harvest grain yield moisture content results that were lower than in the previous years. In 2015 grain yield moisture content varied between 10.3 and 13.9% in case of a row spacing of 45 cm, while by 76 cm between 11.0 and 13.9%.

  • The effect of dissolved oxygen on common carp (Cyprinus carpio) and basil (Ocimum basilicum) in the aquaponics system

    Aquaponics is an integrated system that combines fish farming (aquaculture) and hydroponic plant production. The objective of this study was to examine how the level of dissolved oxygen with or without an air pump affects water quality, fish output and plant growth parameters for common carp (Cyprinus carpio) and basil (Ocimum basilicum).

    Ebb – and flood aquaponics systems (with automatic syphon) was used. Two treatments were set in this experiment, one of which was the aquaponics system without air pump (unit I), where water of the plant bed was pumped two directions, one falling back to the fish tank oxygenating the water the other was pumped to the hydroponics unit. The other system (unit II) was designed with an air pump.

    In the course of the study, water quality parameters, such as oxygen saturation, dissolved oxygen (DO), electrical conductivity (EC) and nitrite were significantly different (p<0.05). Total basil biomass was higher in unit II. (5367.41 g). The final biomass of common carp were
    2829.45 g ± 79.24 and 2980.6 g ± 64.13 g in unit I and unit II respectively. Weight gain (WG) and specific growth rate (SGR) showed no significant differences (p>0.05) between the treatments. 

  • Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress

    Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

  • Penicillium chrysogenum antifungal protein (PAF) production in transgenic tobacco (Nicotiana tabacum) plant

    Under the „Molecular farming” research program (product vaccines and substances for medical use with gene manipulated plant) in 2007 in UD Centre for Agricultural Sciences and Engineering Faculty of Agricultural Science Institute of Horticulture Department of Plant Biotechnology experiments were launched to transform tobacco plant by PAF antifungal protein. Our aim was to learn the transformation technics. We chose the
    Nicotiana tabacum and PAF as model systems.
    Our work was to express several different paf constructions in plants with nuclear and plastid transformation too. After that we confirmed the presence of paf gene in the level of DNA and RNA.

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • Az elmúlt tíz év változásainak vezetői értékelése különböző szervezeti formában működő vállalatoknál

    revolutions and changes. Effects of these changes can be sensible at all parts of agricultural production. It results in new ownership and organisation structure. Agriculture has to suit to the new circumstances of changed firm-size and structure. These kinds of changes essentially define conditions of agricultural production in the future, and they have an affect on husbandry of enterprises.
    To be succeed in managing changes, we have to know the reasons of these alterations and nature of them. It is very important to get to know the advantages and disadvantages of the typical change-management methods and its typology. These methods are more elaborated and widespread at industrial enterprises. It is necessary to get to know the nature, characteristics and reasons of changes, and we should work out ways agricultural companies, taking notice of their speciality.
    The methods and means of examinations
    We aimed to point out what kind of changing processions were typified the activity of agricultural ventures. What are the speciality, strains, the arousing and obstructive factors of nowadays changes. We made questionnaire and sent them to numerous enterprises.
    Most of the answers show that leaders are „floating with flow” and most part of their power is used to fight back actually challenges. Generally consciousness is missing, so they are not govern the events still more they are passive objects of occurrence.
    Naturally, the given answers show, that the most important changes of past are changing of markets, importance of quality production and changes in the structure of enterprises. And – especially at companies, which deal with plant growing –, modifying of structure because of compensation.

  • Improved soil and tomato quality by some biofertilizer products

    The use of microbial inoculums is a part of sustainable agricultural practices. Among various bioeffectors, the phosphorus-mobilizing bacteria are frequently used.

    The objective of this study is to investigate the effect of some industrial biofertilizer inoculums, of containing P-mobilizing bacteria on the quantity and some quality parameters of tomato fruits. Spore-forming industrial Bacillus amyloliquefaciens FZB42 (Rhizovital) as single inoculums and combinations with other Bacillus strains (Biorex) were applied on Solanum lycopersicon Mill. var. Mobil test plant. Soil microbial counts, phosphorus availability, yield and fruit quality, such as total soluble solids (TSS) content and sugars (glucose, fructose) were assessed. The results found that single industrial inoculums of FZB42 product had positive effect on P-availability and fruit quality in the pots. Fruit quality parameters, TSS content, soluble sugars were significantly improved (p<0.05). Such better fruit taste was correlated significantly by the most probable number (MPN) microbial counts. Use of such bioeffector products is supported by the positive interrelation among measured soil characteristics and inside healthy quality parameters of tomato fruits.

  • Caliometric characterisation of crop production byproducts

    By the decreasing tendency of the fossil energy resources more emphasis put on the usage of renewable energy resources. The consideration of environmental protection and the efforts of the European Union make current the widespread usage of renewable energy within biomass energy. One of the determinative trends of biomass energy is the direct combustion of biomass. Characteristically woody stocks are produced for this aim, but there is a considerable potential in several byproducts of growing herbaceous plants or of other processes.

    In our study three byproducts of plant production have been investigated which appeared at the harvest. The Higher Heating Values of wheat, maize and sunflower byproducts have been determined by an IKA C2000 Basic adiabatic calorimeter. According to the statistical analysis of the measured data the HHV of the byproducts are different, and these values are in a negative correlation with the amount of ash in % (R2=0.873) appeared by the combustion.

  • Studies on yield stability in autumn wheat species

    The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and varieties) suitable for the region and the site. The sowing structure adapted to the ecological background increases the yield and decreases the yield fluctuation caused natural effects. Exact long-term trials are essential to develop variety structure of winter wheat production suitable for the given ecological conditions. We have examined the productivity and yield stability of genetically different state registered winter wheat varieties. We have compared the varieties’ yield results in plot trials, at similar agrotechnical conditions, in different cropyears. We have examined the absolute and relative (compared to the mean of varieties) yield of winter wheat varieties. We have valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the connection between productivity and yield stability of varieties. We have pointed out the varieties with good productivity and yield stability in given agroecological conditions.
    According to the results of our examinations the developing of variety structure suitable for the agroecological conditions could increase the potential and effective yield level of wheat production.

  • Anaerobe degradation of maize infected by Fusarium graminearum

    Last year intense rainfalls and moisture conditions were beneficial for the Fusarium sp. in Hungary. Fusarium strains decrease cereal quality (for example maize), furthermore may cause yield loss. Due to the toxin production, the fungi have a dangerous animal and human pathogen effect (Placinta et al., 1999).The effects of the Fusarium infection and its mycotoxin production haven’t been perfectly eliminated. Fusariumgraminearum
    is the most common agricultural pathogen in Hungary. The utilization of infected maize as an alternative biogas raw material may be an efficient and environmentally friendly disposal method. In this case, Fusarium-, and mycotoxin-content of the maize have to be analyzed as well as the impact of these factors’ on the biogas production process. Our experience was based on the raw material basis of a biogas plant. Different amount of Fusarium free and infected maize grits have been added to the regular raw material mixture. The detection of Fusarium fungi has been analyzed
    in experimental digesters throughout the different stages of mesophilic digestion. In the biogas liquid end product the Fusarium was detected by breeding and by microscope. According to our results, the Fusarium sp. was not detectable in the liquid end product after 30 days.

  • Phenometric studies on stalk juice and sugar contents of silo sorghum types

    Bioenergies (among them e.g. bioalcohol) can be solutions for the replacement of fossil fuels. For its production, plants with high sugar or starch content can be used. Juice pressed from the stalk of sugar sorghum has high sugar content (14-17%) that makes it suitable for bioethanol production. During our experiment, we examined 53 restorer male lines; among them 22 were silo type sugar sorghum. We studied the following traits: plant height, breeding time, level of foliation, stalk diameter, characteristics of stalk medulla, juice content of stalk, sugar content of stalk juice. According to examined characteristics, we selected six restorer male lines for studies in the forthcoming years: RL 1, RL 2, RL 3, RL 4, RL 5, RL 9, RL 12, RL 15, RL 18. Their stalk medullas were wet, stalk diameters were medium-thick, sugar contents of juices varied between 17 and 24% at the end of milk mature. Harvest was made in September, they can be classified into early maturation group. Male sterile female lines were the following: SL 1, SL 2, SL 3, SL 4, SL 5. The maintainer male lines were: CL 1, CL 2, CL 3, CL 4, CL 5. In Hungary, there are only a few male sterile female
    lines, so we will use these lines for hybrid production during the next years. 

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Comparison of Integrated and Conventional Production of Young Nonbearing Apple Orchards

    The large number of pesticide applications in apple orchards creates serious problems with pesticide residues and their side effects on beneficial organisms, the environment and human health. This is the reason behind the search for new systems for apple protection.
    The investigations were made in apple orchards of the Institute of Agriculture at Kyustendil, during the period from 1997-1999. Three scab resistant cultivars grafted on rootstocks MM106 were planted in 1996. The orchard was divided into four plots. Two plots were treated as „conventionally” and the other two were treated as „integrated” according to the general principles, rules and standards of integrated apple production.
    The key disease during the experimental period was powdery mildew, which can be controlled only with pruning of infected clusters and shoots during the first three years after planting. The key pests in the orchard during the nonbearing period were the green apple aphid and San Jose scale. In the integrated plant protection system, it is possible to reduce the number of insecticide treatments depending on the density of the main pests.

  • The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review

    Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
    consequently, affecting world’s food security for the increasing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region

    Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
    The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
    agrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)
    and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
    sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
    and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
    one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
    infection rate was less after the second fungicide treatment.
    In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
    ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
    density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
    yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
    treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
    2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
    In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
    obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
    times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.