Search

Published After
Published Before

Search Results

  • On the psychology of mathematical problem solving by gifted students
    289-301
    Views:
    33
    This paper examines the nature of mathematical problem solving from a psychological viewpoint as a sequence of mental steps. The scope is limited to solution processes for well defined problems, for instance, which occur at International Mathematical Olympiads. First the meta-mathematical background is outlined in order to present problem solving as a well defined search problem and hence as a discovery process. Solving problems is described as a sequence of elementary steps of the so called "relationship-vision" introduced here. Finally, non-procedural aspects of the psychology of problem solving are summarized, such as the role of persistence, teacher-pupil relationship, the amount of experience needed, self-confidence and inspiration at competitions.
  • A geometric application to the third-order recurrence relations for sequences
    287-302
    Views:
    31
    Using a third-order linear homogeneous recurrence relation with constant coefficients, it is found a limit-point of a sequence of affixes in plane. Starting from a classic geometric problem, an application is so created and few more nice properties are found and described.
  • Summe einer unendlichen geometrischen Reihe im Mathematikunterricht
    229-240
    Views:
    23
    This article deals with sums of infinite geometric series. We focus on the understanding of the notion by pupils at secondary school through generic and universal models. In the first part we survey this notion in the Czech and Slovak curriculum. We describe the process of gaining knowledge as a sequence of five stages. In the second part we show one possible approach how to introduce the notion "sum of the infinite geometric series" through this process. We illustrate this on some examples for pupils. At the end we formulate some pedagogical recommendation for teachers.
  • Sequenced problems for functional equations
    179-192
    Views:
    11
    There are many possible methods to solve equations of the form H(f(x + y), f(x − y), f(x), f(y), x, y) = 0 (x, y 2 R), where H is a known function and f is the unknown function to be determined. Here we will create a sequence of problems for equations of type (1) (see on the next page). These sequenced problems are appropriate for the fostering of talented students on different level of mathematical education.
  • Preliminary e ects of mathematics curriculum development for primary school student teachers in Sárospatak Comenius Campus
    95-107
    Views:
    30
    Hungarian students' mathematics performance has been getting weaker in the past few years. A possible solution to stop this tendency is to develop curriculum. Therefore, Hungarian researchers have been refining a particular framework of curriculum development in primary school teacher training programmes. The national curriculum is designed on the assumption that learning can be broken into a sequence of levels and students can evenly succeed in gaining knowledge at successive levels. In this paper, we want to discuss how to reduce students' difficulties with different background to grow competence at successive levels.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    37
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.
  • The far side of recursion
    57-71
    Views:
    17
    Recursion is somewhat of an enigma, and examples used to illustrate the idea of recursion often emphasize three algorithms: Towers of Hanoi, Factorial, and Fibonacci, often sacrificing the exploration of recursive behavior for the notion that a "function calls itself". Very little effort is spent on more interesting recursive algorithms. This paper looks at how three lesser known algorithms of recursion can be used in teaching behavioral aspects of recursion: The Josephus Problem, the Hailstone Sequence and Ackermann's Function.
  • Interdisciplinary Secondary-School Workshop: Physics and Statistics
    179-194
    Views:
    55

    The paper describes a teaching unit of four hours with talented students aged 15-18. The workshop was designed as a problem-based sequence of tasks and was intended to deal with judging dice whether they are regular or loaded. We first introduced the students to the physics of free rotations of rigid bodies to develop the physics background of rolling dice. The highlight of this part was to recognise that cubes made from homogeneous material are the optimal form for six-sided objects leading to equal probabilities of the single faces. Experiments with all five regular bodies would lead to similar results; nevertheless, in our experiments we focused on regular cubes. This reinsures that the participants have their own experience with the context. Then, we studied rolling dice from the probabilistic point of view and – step-by-step – by extending tasks and simulations, we introduced the idea of the chi-squared test interactively with the students. The physics and the statistics part of the paper are largely independent and can be also be read separately. The success of the statistics part is best described by the fact that the students recognised that in some cases of loaded dice, it is easier to detect that property and in other cases one would need many data to make a decision with small error probabilities. A physical examination of the dice under inspection can lead to a quick and correct decision. Yet, such a physical check may fail for some reason. However, a statistical test will always lead to reasonable decision, but may require a large database. Furthermore, especially for smaller datasets, balancing the risk of different types of errors remains a key issue, which is a characteristic feature of statistical testing.

    Subject Classification: F90, K90, M50, R30

  • The study of sequences defined by a first order recursion by means of a pocket calculator
    231-240
    Views:
    29
    This paper will present the way we can use a simple pocket calculator to teach mathematics. Namely, a pocket calculator can be very useful to study the properties of sequences defined by first order recursion (e.g. monotonicity, boundedness and convergence) and to gain a deeper understanding.