Search

Published After
Published Before

Search Results

  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    9
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.
  • Teaching Java programming using case studies
    245-256
    Views:
    2
    The paper deals with the technical background and the pedagogical issues of a specific implementation for the collection, assessment and archiving of the students' assignments written in Java. The implemented system automatically applies object-oriented metrics on the collected works in order to measure the characteristic features of the assignments. Tutors use these results for the detection of plagiarisms and for the selection of outstanding works. The paper interprets the measured values within a real Java course held in the 3rd term of the Informatics bachelor study programme at the technical university. Students have several case studies devoted to the simulation of the ATM (Automatic Teller Machine) at disposal. We conclude that the access to the analyzed pool of case studies, blended with the Sun Learning Connection license from the Sun Microsystems, Inc., is an effective way of teaching programming in Java.
  • Teaching word processing – the practice
    247-262
    Views:
    6
    I compared two surveys, which were aimed to check the word processing ability of students in high schools and universities. The surveys were carried out ten years apart from one another, in 1997 and 2006. The results clearly show that most of the students are not able to use word processors properly. In the survey of 1997 I found explanation for this underperformance in the lack of computers and teachers. However, the results of the second survey did not prove any better than the results of the first, and in 2006 neither the number of computers nor the number of teachers can be blamed. What else then? I suggest that the reason for this general ignorance, for this `modern illiteracy' is the ignorance of the teachers. Until the teachers are not prepared and the senior students of the universities leave the education system without a proper knowledge of the required subjects, there is little chance that they would be able to teach word processing at a satisfactory level.
  • Comment les enseignants en formation initiale utilisent les technologies informatiques dans leurs classes
    187-208
    Views:
    8
    The research presented here deals with the way French pre-service teachers assimilate the working of technology tools and the effects on professional practice of integrating these tools into classes. We focused on the professional writings of pre-service teachers regarding the use of technology in their teaching. The results show that, besides official instructions, the motivations put forward by pre-service teachers who integrated technology in their classes are mainly their students' interest in computers and how powerful this tool is. They also show that in such an environment teachers tend to keep in the background and to leave the students to interact chiefly with the computer. We also noticed that the specificities of managing a classroom in computer environment are not taken into account unless they generate problems.
    Résumé. La recherche présentée ici porte sur l'appropriation des outils informatiques par les enseignants français en formation initiale et les effets de leur intégration dans les classes sur les pratiques professionnelles. Nous avons pris comme objet d'étude des écrits professionnels, élaborés par ces professeurs stagiaires, portant sur l'utilisation des TIC dans leur enseignement. Les résultats obtenus font apparaître qu'outre les injonctions institutionnelles, les motivations invoquées par les stagiaires pour recourir à l'informatique concernent surtout l'attrait de leurs élèves pour l'ordinateur et la puissance de cet outil. Dans le cadre des usages en classe, nos résultats montrent que l'enseignant a tendance à s'effacer devant l'ordinateur, considéré comme l'interlocuteur privilégié de l'élève. Nous avons aussi pu constater que les spécificités de la gestion de la classe en environnement informatique ne sont prises en compte que lorsqu'elles se révèlent sources de problèmes.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 20 - January 22, 2012, Levoča, Slovakia
    205-230
    Views:
    14
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Levoca, Slovakia from the 20th to the 22th of January, 2012. The 66 participants – including 54 lecturers and 25 PhD students – came from 6 countries, 20 cities and represented 33 institutions of higher and secondary education. The abstract of the talks and the posters and also the list of participants are presented in this report.
  • Many paths lead to statistical inference: Should teaching it focus on elementary approaches or reflect this multiplicity?
    259-293
    Views:
    65

    For statistics education, a key question is how to design learning paths to statistical inference that are elementary enough that the learners can understand the concepts and that are rich enough to develop the full complexity of statistical inference later on. There are two ways to approach this problem: One is to restrict the complexity. Informal Inference considers a reduced situation and refers to resampling methods, which may be completely outsourced to computing power. The other is to find informal ways to explore situations of statistical inference, also supported with the graphing and simulating facilities of computers. The latter orientates towards the full complexity of statistical inference though it tries to reduce it for the early learning encoun-ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and allows for a full concept of probability in comparison to the Informal Inference, which reduces probability to a mere frequentist concept and – based on this – restricts inference to a few special cases. We also develop a didactic framework for our analysis, which includes the approach of Tamás Varga.

    Subject Classification: 97K10, 97K70, 97K50, 97D20

  • Herschel's heritage and today's technology integration: a postulated parallel
    419-430
    Views:
    9
    During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
    • Disciplinary congruence with influential contemporary trends in mathematics.
    • External currency in wider mathematical practice beyond the school.
    • Adoptive facility of incorporation in classroom practice and curricular activity.
    • Educational advantage of perceived benefits outweighing costs and concerns.
    An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 28 – January 30, 2011, Satu Mare, Romania
    159-179
    Views:
    6
    The meeting Researches in Didactics of Mathematics and Computer Science was held in Satu-Mare, Romania from the 28th to the 30th of January, 2011. The 46 Hungarian participants – including 34 lecturers and 12 PhD students – came from 3 countries, 14 cities and represented 20 institutions of higher education. The abstract of the talks and the posters and also the list of participants are presented in this report.
  • E-learning management systems in Hungarian higher education
    357-383
    Views:
    13
    Computers, informatics, and information technology have an ever-increasing role in the establishment and spread of new educational forms and methods. The role of e-learning as a new educational model is increasing in the world of computer networks, because of a widespread access to the net and a growing demand for learning beside work.
    Technological elements of e-learning can be separated as Learning Management System, authoring system, course material and a browser. Learning Management System is the software package that creates the structure of the whole educational process: course organisation, course material presentation, tracking student work, recording results, and the completion of the program.
    This publication shows examples of Learning Management Systems used in Hungarian higher education. Summarizing and systematizing expectations and demands expressed in connection with learning management systems, the present work tries to help the reader orientate on an ever-expanding market.
  • The hyperbola and Geogebra in high-school instruction
    277-285
    Views:
    10
    In this article the results of teaching/learning hyperbola and its characteristics in high-school using computers and GeoGebra are shown. Students involved in the research attend Engineering School "Nikola Tesla" in Leposavic, Serbia. The aim of the research was to define ways and volume of computer and GeoGebra usage in mathematics instruction in order to increase significantly students' mathematical knowledge and skills.
  • Problem-solving in mathematics with the help of computers
    405-422
    Views:
    10
    One of the most important tasks of the didactics of mathematics is the describing of the process of problem-solving activity and problem-solving thinking. The psychological theories concerning the problem-solving thinking leave the special demand of school subjects out of consideration, and search for connections of universal validity. In this article we attempt to connect an abstract theory of psychology concerning problem-solving thinking and a more practical conception of the problem-solving activity of mathematics, which is based on Polya's idea. In this way we can get a structure of problem-solving, which has scientific bases and at the same time it is useful in computer aided learning. Our result was developed and tested in Hungary so this is suitable especially for the Hungarian conditions of mathematics teaching.
  • Apollonius' problems in grammar school
    69-85
    Views:
    7
    In this work there are ten problems of Apollonius listed with illustrations and solution possibilities including students' solutions, too. Usually, it is rather difficult for students to grasp the essence of these problems with the use of traditional means, bows and rulers, but the use of computers offers higher accuracy.
  • Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
    307-316
    Views:
    85

    Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.

    Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50

  • Teaching meaningful mathematics with the Computer Algebra System MAXIMA using the example of inequalities
    53-65
    Views:
    10
    The paper was originally motivated by the request to accentuate the meaningful contribution of inequalities in Mathematics Education. Additionally nationwide approved competences such as estimating come to the fore when organizing mathematical contents along some central Big Ideas. Not least the integration of computers enriches the reasonable discussion of inequalities by modern well accepted methodological principles. The freeware MAXIMA is used as Computer Algebra System (CAS) representatively.
  • Better understanding mathematics by algorithmic thinking and computer programming
    295-305
    Views:
    104

    Tamás Varga’s mathematics education experiment covered not just mathematics, but also other related topics. In many of his works he clearly stated that computer science can support the understanding of mathematics as much as mathematics supports informatics. On the other hand, not much later than the introduction of the new curriculum in 1978, personal computers started to spread, making it possible to teach informatics in classes and in extracurricular activities. Varga’s guided discovery approach has a didactic value for other age groups as well, not only in primary school. Its long-lasting effect can be observed even in present times. Having reviewed several educational results in the spirit of Tamás Varga, we have decided to present an extracurricular course. It is an open study group for age 12-18. Students solve problems by developing Python programs and, according to our experiences, this results in a deeper understanding of mathematical concepts.

    Subject Classification: 97B10, 97B20, 97D50, 97N80, 97P20, 97P30, 97P40, 97P50, 97U70