Search

Published After
Published Before

Search Results

  • Packings in hyperbolic geometry
    209-229
    Views:
    19
    I am becoming older. That's why I am returning to my youth sins. "On revient toujours á ses premiers amoures". This sin was the noneuclidean hyperbolic geometry – especially the Poincaré model. I was teaching this kind of geometry over many years as well in highschool (Gymnasium) as for beginners at the university too.
    A lot of results concerning packings in hyperbolic geometry are proved by the Hungarian school around László Fejes Tóth. In this paper we construct very special packings and investigate the corresponding densities. For better understanding we are working in the Poincaré model. At first we give a packing of the hyperbolic plane with horodisks and calculate the density. In an analogous way then the hyperbolic space is packed by horoballs. In the last case the calculation of the density is a little bit difficult. Finally it turns out that in both cases the maximal density is reached.
  • Wichtige Momente aus der ungarischen Geschichte des Analysisunterrichts
    57-76
    Views:
    71

    Törner et al. (2014) paper gives an outstanding review about teaching analysis at high school level in (Western) Europe. We tried to extend this paper with some results from the Hungarian Math History (Beke and Rátz 1897-1924, after second World War 1949-1960, the current situation-first of all based on schoolbooks, and we also included an experiment from 1984-1989 by E. Deák, which was interrupted and partially forgotten). In summary, this paper deals with the turning points of the brief history of teaching secondary school analysis in the XXth century in Hungary, including some conclusions at the end.

    Subject Classification: 97A30, 97C30, 97D30, 97E50, 97I20, 97I40, 97U20

  • A case study of the integration of Algorithm Visualizations in Hungarian programming education
    51-66
    Views:
    120

    In this study, I will introduce how Algorithm Visualizations (AV) can help programming education or, in this case, the acquisition of basic programming theorems. I used two di erent methods to test this: in the first round, I examined in a larger group how much the students' ability to solve specific tasks changes after being introduced to a visualization tool, and then, what was their motivation and experience during this process. In the second round, I looked for the components that could be important when choosing a tool with the help of an in-depth interview with a smaller number of individuals. In both cases, I describe the research, experience, and results of the study, and then summarize them at the end.

    Subject Classification: 97P10

  • Research studies in didactics of mathematics supported by the Operant Motive Test
    153-173
    Views:
    29
    The present paper reports a case-study which took place within an EUsupported international program organized for research and development of multi-grade schools (NEMED, [16] [26]). One of the main goals of the research was to develop the connection between disadvantageous social situations and the efficiency (success or failure) in learning mathematics especially from the point of view of average and above-average (talented) students: Why does the talent of children with socially disadvantageous background remain undiscovered? How can we make school mathematics more aware of hidden talents?
    The author was looking for a didactical solution that compensated for social disadvantages without restricting the development of "average" students by using sociological, educational, psychological and mathematical (experimental and theoretical) studies in interaction with a series of experimental (hypothesis testing and exploratory) investigations.
    We constructed tools and methods for exploration and experimental teaching, adapted to Hungarian conditions (Curriculum Development, teacher training, materials, interviews, Kuhl's motivation test, Malara's "researchers and practicing teachers in cooperation" method, etc., see [18], [20]).
    The teaching materials and methodological guidelines are based on Bruner's representation theory (see [5]). The empirical research took place in 16 multi-grade schools located in different parts of the country. The author co-operated with nearly 250 students and 25 teachers for 3 years. In this paper we try to demonstrate how an Operant Motive Test can be involved in this research (see [18]).
  • "How to be well-connected?" An example for instructional process planning with Problem Graphs
    145-155
    Views:
    90

    Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.

    Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30

  • Outstanding mathematicians in the 20th century: András Rapcsák (1914-1993)
    99-110
    Views:
    21
    In this paper we commemorate the life and work of András Rapcsák on the occasion of the centenary of his birth. He was an outstanding professor and a scholar teacher. He was head of the Department of Geometry (1958-1973) and the director of the Institute of Mathematics at the University of Debrecen (Hungary). He played an important role in the life of the University of Debrecen. He was the rector of this university between 1966 and 1973.
    At the beginning of his career he taught at secondary schools in several towns. He wrote mathematical schoolbooks with coauthors. He also taught at Teacher's College in Debrecen and in Eger.
    He became to interested in differential geometry under the influence of Ottó Varga. The fields of his research were line-element spaces and related areas. He was elected an Ordinary Member of the Hungarian Academy of Science in 1965. He wrote 21 papers, 8 school and textbooks and 3 articles in didactics of mathematics.
  • Delusions in informatics education
    151-161
    Views:
    20
    In the following article our intention is to try to introduce the negative ideas that exist today in Hungary regarding informatics education within the secondary education system. [Zs] As far as we know, these delusions are characteristic of not only Hungary, but we believe that we should look for our own mistakes, that is why we refer to Hungarian examples.
    We have examined the informatic knowledge taught in the first 10 years of secondary education, the possible curriculum of the general informatics subject.
    To reach our aim, first we have to deviate a bit from our original topic, because without this, it would be more difficult to understand the core subject of the article. In the deviation we will explain what is called informatics, what is called informatics subject. Then we will deal with the main topic and in the summary we will explain what we believe is the aim of general informatics education.
  • Zur Veränderung des Stellenwertesvon Beweisen im Mathematikunterricht - eine Analyse von ungarischen Abiturprüfungenzwischen 1981 und 2020
    35-55
    Views:
    67

    Proofs are not just an essential, crucial part of mathematics as a science, they also have a long tradition in Hungarian mathematics classrooms. However, the school in general and, mathematics education in particular, have been changed in the last few decades enormously, including the final secondary school examinations in mathematics. The current paper's main goal is to answer the question, how has been changed the weight and the content of reasoning and especially proving tasks in the relevant examinations.

    Subject Classification: 97E54, 97D64, 97U44

  • The efficiency of written final exam questions in mathematics based on voluntary data reports, 2012–2015
    63-81
    Views:
    27
    The efficiency of each question in the mathematics written final exam is not recorded by the institutions organizing the graduation exam. In order to overcome this deficiency the committee of final exams in mathematics and the Hungarian Educational Authority ask schools to send – beyond the total marks obtained on the paper – the scores of each question of all individual candidates to the Authority every year since 2012. Because a high proportion of schools complied with this request between 2012 and 2015, the researchers were provided valuable information for a deeper analysis on the effectiveness of exams. In this paper we have carried out an analysis of the efficiency of questions set in the written examination papers both on the intermediate and on the higher level in the last four years, on the basis of these voluntary data reports.
  • Kompetenzstreben und Kompetenzerwerb: Funktionale didaktische Fördermöglichkeiten durch Differenzierung und Individualisierung
    1-52
    Views:
    31
    As a first glimpse of specific research endeavours the most important components of competence motivation are discussed in relation to didactical questions of gaining competence by inner differentiation and individualization: self-efficacy, optimal challenge, intrinsic motivation, exploration needs, internal attribution, self-determination motivation, defense of self-worth, self-concept, and achievement motivation. In this sense "competence" means ever changing standards of self-regulation of an individual interacting with the various cognitive and emotional demands of his/her environment.
    In fulfilling these requirements a prototypical example of inner differentiation in mathematics instruction is given. This didactical elaboration is available as a selfinstructing unit in Hungarian and German language within the "Electronic periodical of the Department of Methodology of Mathematics" which can be reached under http://mathdid.inhun.com.
  • Our digital education habits in the light of their environmental impact: the role of green computing in education
    69-86
    Views:
    113

    With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.

    Subject Classification: 97P99, 94-06, 94-02

  • Comments on the remaining velocity project with reports of school-experiments
    117-133
    Views:
    8
    The aim of this article is to introduce different possible solutions to the exercise referring to the calculation of "remaining velocity". We explain the possible approaches to the problem with the help of either using the tools of mathematics or other subjects. During the past few years, we have made Hungarian and Slovakian secondary school students solve the exercise, choosing from both children of average and of high abilities. The experince has shown that very few students were able to solve the problem by themselves, but with the help of their teachers, the exercise and the solution has been an eye-opener experience to all of them. A lot of students were even considering to drive more carefully in the future after getting their driving licenses.
  • The role of representations constructed by students in learning how to solve the transportation problem
    129-148
    Views:
    103

    The purpose of the research presented in this paper was to study the role of concrete and table representations created by students in learning how to solve an optimization problem called the transportation problem. This topic was learned in collaborative groups using table representations suggested by teachers in 2021. In 2022, the researchers decided to enrich the students’ learning environment with concrete objects and urged the students to use them to present the problem to be solved. The students did it successfully and, to be able to record it in their notebooks, they constructed a table representation by themselves without any help from their teacher. After that, they managed to solve the problem by manipulating the objects. At the same time, each step in the solution was presented with changes in the table. The students were assessed before (pre-test) and after collaborative learning (test) in both academic years. The pre-test results were similar, but the test results were better in 2022. Therefore, it can be concluded that using concrete and table representations constructed by students in learning how to solve transportation problems makes collaborative learning more constructivist and more effective than when they use only table representations suggested by their teachers.

    Subject Classification: 97M10, 97M40

  • Veranschaulichung der Lehrstoffstruktur durch Galois-Graphen
    217-229
    Views:
    37
    In this article we compare the process diagram with the Galois-graph, the two hierarchical descriptions of the curriculum's construction from the point of didactics. We present the concrete example through the structure of convex quadrangles. As a result of the analysis it is proved that the process diagram is suitable for describing the activity of pupils, still the Galois-graph is the adequate model of the net of knowledge. The analysis also points out that in teaching of convex quadrangles the constructions of curriculum based only on property of symmetry and only on metrical property are coherent. Generalizing concept is prosperous if the pupils' existing net of knowledge lives on, at most it is amplified and completed. Teaching of convex quadrangles in Hungarian education adopts this principle.
  • Categorising question question relationships in the Pósa method
    91-100
    Views:
    63

    The doctoral research of the author – with a reverse didactic engineering (RDE) methodology – aims at reconstructing the theoretical background of the ‘intuitively developed’ Pósa method for inquiry-based learning mathematics (IBME) in Hungarian talent education. Preliminary results of the second step of this theorization is presented, which applies tools of the Anthropological Theory of the Didactic (ATD). A model is proposed for categorizing question-question relationship with 3 categories: helping question, follow-up question and question of a kernel. The first two of them are claimed to represent two types (relevant or not) of generating-derived questions relationship. The model is also a prospective tool for connected task- and curriculum design and analysis within IBME development.

    Subject Classification: 97D20, 97D40, 97D50, 97E50, 97K30

  • Maximum and minimum problems in secondary school education
    81-98
    Views:
    29
    The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems.
  • Die Stichprobe als ein Beispiel dafür, wie im Unterricht die klassische und die bayesianische Auffassung gleichzeitig dargestellt werden kann
    133-150
    Views:
    24
    Teaching statistics and probability in the school is a new challenge of the Hungarian didactics. It means new tasks also for the teacher- and in service-teacher training. This paper contains an example to show how can be introduced the basic notion of the inference statistics, the point- and interval-estimation by an elementary problem of the public pole. There are two concurrent theories of the inference statistics the so called classical and the Bayesian Statistics. I would like to argue the importance of the simultaneously introduction of both methods making a comparison of the methods. The mathematical tool of our elementary model is combinatorial we use some important equations to reach our goal. The most important equation is proved by two different methods in the appendix of this paper.
  • A retrospective look at discovery learning using the Pósa Method in three Hungarian secondary mathematics classrooms
    183-202
    Views:
    183

    While the Pósa Method was originally created for mathematical talent management through extracurricular activities, three "average" public secondary school classrooms in Hungary have taken part in a four-year experiment to implement the Pósa Method, which is based on guided discovery learning of mathematics. In this paper, we examine the students' and teachers' reflections on the Pósa Method, and how student perspectives have changed between their first and last year of high school. Overall, teachers and students had a positive experience with the Pósa Method. Furthermore, our research indicated that this implementation has met several objectives of the Pósa Method, including enjoyment of mathematics and autonomous thinking.

    Subject Classification: 97D40

  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 21 – January 23, 2010, Debrecen, Hungary
    177-195
    Views:
    10
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 21 to January 23, 2010. The 42 Hungarian participants – including 16 PhD students – came from 5 countries, 14 cities and represented 25 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report.
  • Teaching of old historical mathematics problems with ICT tools
    13-24
    Views:
    15
    The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way.
  • Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
    51-67
    Views:
    108

    In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.

    Subject Classification: 97D40

  • On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
    77-89
    Views:
    25
    The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers.
  • CS unplugged in higher education
    1-23
    Views:
    35
    Nowadays, there is a significant lack of workforce in the IT industry, even though it is one of the most lucrative professions. According to researchers' forecasts, the existing shortage is growing, so the wages offered will be higher, yet it seems that young people are not attracted to the profession. This problem draws attention to the need to change the curriculum so that it can attract students more. One possible solution is to supplement the curriculum with CS Unplugged activities, which makes it easier to understand and deepen difficult concepts and make IT lessons more colorful. In my article, besides presenting the already known CS Unplugged activities, I will deal with how this can be applied in Hungarian higher education as well.
  • Learning and Knowledge: The results, lessons and consequences of a development experiment on establishing the concept of length and perimeter
    119-145
    Views:
    25
    In the paper the four main stages of an experiment are described focusing on the question as to how much measuring the length and perimeter of various objects such as fences, buildings by old Hungarian units of measurements and standards contribute to the establishment of the concept of perimeter.
    It has also been examined in what ways and to what extent the various forms of teaching such as frontal, group and pair and individual work contribute to the general knowledge, thinking, creativity and co-operation in this area.
    It will also be shown to what extent folk tales, various activities and games have proved to be efficient in the teaching of the particular topic.
    Every stage of the experiment was started and closed with a test in order to find out whether the development was successful and children managed to gain lasting knowledge in this particular area.
  • What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
    39-50
    Views:
    74

    Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.

    Subject Classification: 97-01, 97-03, 97D50