Search

Published After
Published Before

Search Results

  • The Trivial Servomotor and Servo Control System Expressions
    1-4
    Views:
    150

    In electrical engineering the technical terms “servomotor” and “servo control system” are used since long decades ago. They are generally accepted and wide-range used denominations worldwide in scientific papers, books, advertisements and other publications. In other words, the above two terms become somewhat self-understanding incontestable parts of our technical language. However, this paper emphasizes the idea to discuss the exact and real meaning of these two terms. This because often it happens that in scientific publications there is no made clear difference between the terms “motor” or “servomotor”, respectively “control system” or “servo control system” and that may be a real source of misunderstandings or confusions. For this reason, in first step a thorough overview of the available international scientific literature is presented in the paper in order to evidence the context and conditions in that are used the discussed scientific expressions. Then a careful analysis from technical point of view is unfolded to bring arguments to strengthen the endeavor that a clear difference should be made between the terms “motor” and “servomotor”, respectively “control system” and “servo control system” in demanding technical discussions, as well as in scientific publications. Not at least, there is proposed an original definition of the two discussed terms, reflecting a point of view that may contribute to better understanding and utilization in scientific debates and publications.

  • Speed Control of Three Phase Induction Motor Using Scalar Method and PID Controller
    1-5.
    Views:
    228

    This paper presents the speed control of a three-phase induction motor using the scalar control method with PID controller. The system maintains a constant volt to frequency ratio for any change in the load. We also used vector control method and bond graph to describe the motor model, as well as its behavior. Finally, we simulated the system using Labview, where the good results of using the scalar control technique are shown.

  • Sway Control of 3-Cars Crane System Using Proposed Fuzzy-PID Controller
    1-8.
    Views:
    239

    This paper presents a novel control approach for 3 cars crane systems. Nowadays; some problems for carrying unpredicted loads of crane systems exist. On the other hand; long bar loads are very important to carry without touch on other materials in factories. In this simulation study, fuzzy based controllers were designed to control vibrations of 3 cars crane system. The simulation results are improved and show this kind of controllers will be employed in real time such systems.

  • NI LabVIEW Based Camera System Used for Gait Detection
    1-3.
    Views:
    214

    In these times, with the development of the world, biometric identification systems are becoming more and more widespread. Access control systems, but even the most mid-range smartphones have biometric authentication features, and even ID cards can include a person's fingerprint. The research group previously realized a rudimentary gait recognition system, which was upgraded to a multicamera system with high-resolution cameras and instead of reference points, the new version recognizes different templates. The program can compare and evaluate the functions that are matched to the reference curve and the current curve in a specific way, whether two walking images are identical. The comparison is decided by the definite integrals of the two suited functions. The self-developed gait recognition system was tested by the research team on several test subjects and according to the results, permission was never given to a strange person.

  • Adaptive Backstepping Controller of PMLSM
    1-6.
    Views:
    266

    In this paper, a nonlinear adaptive speed controller for permanent magnet linear synchronous motors based on a newly developed adaptive recursive Backstepping control approach for a permanent magnet synchronous motor drive is discussed and analyzed. The Backstepping technique provides a systematic method to address this type of problem. It combines the notion of Lyapunov function and a controller procedure recursively.  The adaptive Backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties. The overall stability of the system is shown using Lyapunov stability theorem. The simulation results clearly show that the proposed scheme can track the speed reference.

  • Development of an IoT Based Smart Meteorological Station & Horticultural Irrigation System’s Controller Using a Raspberry Pi Linux Server
    1-6.
    Views:
    133

    In my current project an IoT based device has been developed, the main function of which is to allow the control of its own flexible meteorological station and irrigation system. Besides the control computer, there are meteorological sensors attached, based on which we control our agricultural irrigation apparatus.

  • Brushless DC Motor Modeling Using Bond Graph Method and Control using LabVIEW: Speed control based calssical PID control
    1-5.
    Views:
    250

    This paper aims to simulate and control a three-phase Brushless DC Motor. Bond Graph method has been used to obtain fast and simple dynamic model. The system has been controlled by classical PID controller. All the paper results were fulfilled using LabVIEW program.

  • Solar Tracker Platform Development for Energy Efficiency Improvement of Photovoltaic Panels
    1-6.
    Views:
    173

    Solar energy systems have emerged over the last decades as the cleanest and most abundant renewable energy resources available worldwide. Solar trackers are devices specially developed to enhance the energy efficiency of solar energy systems. This paper presents the design and implementation stages of a reconfigurable hardware technology-based two-axis solar tracker platform, specially conceived to improve the energy efficiency of photovoltaic (PV) panels. The main module of this platform is the NI-MyRIO ready-to-use development system built upon a high-performance Field Programmable Gate Array (FPGA) processor that controls the entire solar tracker unit. Optimal tracking of the sun movement and obtaining the maximal energy efficiency rate is achieved by simultaneous real-time controlling both the captured sunlight intensity and PV cell temperature magnitudes. In this way, a robust and versatile positioning system has been developed that performs a high precision and accurate tracking pathway. All the control algorithms are implemented there under the LabView graphical programming software toolkit. The final solution boosts in a useful and modularized tracking system that looks useful in a wide range of applications both in industrial and domestic project sites with different power scales.

  • Bond Graph Modeling, Simulation, and Control of Permanent Magnet Linear Synchronous Motor: PMLSM Motor Based EVs Applications
    1-9
    Views:
    188

    The high-performance feature of the Permanent Magnet Linear Synchronous Motor (PMLSM) makes it a reliable and valuable motor for use in the automotive industry, especially for electric vehicle (EVs) applications. This research proposes a bond graph approach in modeling the PMLSM as a multi-domain dynamical system.

    However, A time-based simulation was performed using 20-sim software to simulate the dynamical behavior of the motor. An equivalent model of the motor was first obtained and then modeled and simulated using 20-sim software. The model of the PMLSM drive system was modeled separately and incorporated with PMLSM Motor equivalent model to form a global model.

    Moreover, the motor drive system response was studied based on the sensor resolutions and the inverter switching frequency. The block diagram and the transfer function methods validated the bond graph model obtained. Two classical PIs such as continuous and discrete were implemented on the motor response to control the velocity of the motor.

  • PID Controller Tuning Optimization with Genetic Algorithms for a Quadcopter
    1-7.
    Views:
    698

    This paper is focused on the dynamic of mathematical modeling, stability, nonlinear gain control by using Genetic algorithm, utilizing MATLAB tool of a quadcopter. Previously many researchers have been work on several linear controllers such as LQ method; sliding mode and classical PID are used to stabilize the Linear Model. Quadcopter has a nonlinear dynamics and unstable system. In order to maintain their stability, we use nonlinear gain controllers; classical PID controller provides linear gain controller rather than nonlinear gain controller; here we are using modified PID control to improve stability and accuracy. The stability is the state of being resistant to any change. The task is to maintain the quadcopter stability by improving the performance of a PID controller in
    term of time domain specification. The goal of PID controller design is to determine a set of gains: Kp, Ki, and Kd, so as to improve the transient response and steady state response of a system as: by reducing the overshoot; by shortening the settling time; by decrease the rise time of the system. Modified PID is the combination of classical PID in addition to Genetic Algorithm. Genetic algorithm consists of three steps: selection, crossover, and mutation. By using Genetic algorithm we correct the behavior of quadcopter.

  • Designing an ATmega328 Microcontroller Based Gesture-controlled IoT UGV Unit and Creating a Camera System Using Linux Distribution
    1-7.
    Views:
    215

    The topic of the research is the design and building of a UGV (Unmanned Ground Vehicle), which we can control wirelessly with a glove designed for this purpose. The design and use of this gesture-controlled robot can be observed in this summary. A camera will be installed on the robot unit, whose image we can query through the local network. Furthermore, the hardware and software for this camera system will be described as well.

  • ROS OS Based Environment Mapping of Cyber Physical System Lab by Depth Sensor
    1-6
    Views:
    202

    The 21st century is a century of Robotics and thus the appearance of robots in the industries made the “Industrial Revolution 4.0” in which we can control and analyse the system using HMI’s or wirelessly over network and it’s a great example of industry 4.0 component. Nowadays robots are very important part of industry’s processing unit as they have the tendency to work 24*7 thus increases the efficiency of processing and production unit.

     In our project a depth sensor (Microsoft’s Xbox Kinect) is mounted on a mobile robot whose main task is to map our Cyber Physical System Lab in 3-Dimensional which uses a ROS OS software installed on linux machine.

     The robot will use a Simultaneous localization and mapping (SLAM) process to map an environment while currently generating an estimate for the location of the Robot.

  • Trajectory Control of Designed Experimental Mobile Robot
    1-5.
    Views:
    276

    Due to advancing technology; nowadays mobile robot applications in hospitals have been increased. For that reason, it is very important and necessary to analyze the trajectory of such helping robotic system. However; there are many types of mobile robots have been utilized in hospital applications such as helping nurses. In this simulation study; a designed and controlled mobile robot was controlled by using standard feedback controllers. On the other hand, the robot was also tested with disturbances of ground surface roughness. The simulation results were improved that standard PID controller has superior performance to overcome surface roughness of the robot trajectory.

  • Modelling and Simulation of Stepper Motor For Position Control Using LabVIEW
    1-5.
    Views:
    1671

    This paper presents hybrid stepper motor (is a type of stepping motor) modelling and simulation which is widely used a kind of motor in industrial applications. In this study, the stepper motor was modelled using bond graph technique and simulation for desired position was executed on LabVIEW
    graphical interface. Then, firstly a convenient PID controller was designed for position, speed and current and PID close loopresponse was obtained for position control. Then, PID parameters for each controller were arranged separately to obtain good response Secondly, Fuzzy Logic controller applied to
    the system and its response was obtained. Finally, both responses are compared. According to comparison, it was observed that Fuzzy Logic controller’s response is better than PID’s. (In this paper, all shown responses were observed for 120 degree desired position)

  • DC Motor Simulation with ARM Based Hardware in the Loop
    1-3.
    Views:
    93

    Hardware in the loop testing is increasingly important product testing for cutting down time to market. In my previous article I identified the parameters of a DC motor control system using system identification. An implementation of the resulting transfer function was developed on an ARM based hardware in the loop system and has been verified against the original system. The results show that the hardware in the loop system produces responses within tolerance to the stimulus signals and can be used for testing of controlsystems.

  • Reconfigurable Hardware Technology Application in Buildings Supervising and Monitoring Systems
    1-6.
    Views:
    118

    Due to the continuously increasing demand for more comfortable residential or commercial buildings in the last decades the researches in the so called “intelligent buildings” topic has emerged as one of the most challenging and high ranked engineering task. Consumers also require a higher level of security, supervision, and control of the buildings according to a large scale of user needs. These expectations face building automation and supervising system developers with a challenging problem, difficult to approach with classical methods or strategies. Therefore, this paper is focused to outline novel facilities and solutions offered by the current level microelectronic technologies in building automation. In the first step of this endeavor the benefits and advantages of the reconfigurable hardware systems is highlighted and outlined. Then a concrete building automation and supervising system implementation in hardware reconfigurable technology is presented and detailed. The main unit of this system has been built upon a Genesys Virtex-5 FPGA-based development board, as a high speed, parallel, and distributed computing reconfigurable unit. The software modules for building supervising and monitoring purposes embed last generation MicroBlaze technology which allows fast and convenient implementation of sophisticated control algorithms. The result of the entire development is a powerful and versatile system representing a well suitable solution for the most sophisticated and demanding customer needs in building supervising and monitoring applications.

  • Benefits of Cyber-Physical Systems Modeling and Simulation with LabView
    1-6
    Views:
    194

    Cyber-physical systems (CPSs) as part of the Industry 4.0 strategy, represents one of the most challenging research topic for engineers. It’s well known that CPSs integrate at highest level digital technology (computation, control and networking) into physical objects. However, by incorporating various heterogeneous subsystems with different energy levels and functionalities, both analogue and digital signals management, as well as a large scale of communication and information technologies, their modeling and simulation becomes a difficult engineering task. In the past years a huge number of research papers has been dedicated to identify and develop modeling techniques and simulation toolkits being able to handle CPSs complexity. Following these trends, this paper is focused to research and evidence issues linked with the LabView graphically oriented programming technology utilization for CPSs modelling and simulation purposes. Both advantages and shortcomings of this very special technology are studied in order to design and implement a viable software framework being able to model and simulate various CPS structures. As a concrete example, a specific CPS configuration consist of six computer-based mechatronic systems that constitute a laboratory-prototype manufacturing plant has been chosen for LabView-based modeling and simulation. Various virtual instrument-type models of this setup has been conceived and proposed for real-time simulation. It has been concluded then that the application of LabView technology lead to interesting and useful results. The paper specially highlights the benefits and versatility of LabView utilization for complex CPSs modeling and simulation purposes.

  • Aspects Regarding Fly Control of Quadcopter
    1-5.
    Views:
    140

    Quadcopter is one of Unmanned Aerial Vehicle (UAV) which has two pairs of identical fixed pitched rotor propellers. It can fly autonomously based on pre-programmed flight or manually controlled by a remote, and every movement achieved by varying the speed of each rotor independently. The orientation of quadcopter axes relative to a reference line and its direction of motion are known as attitude. Fly control factors are affected by attitude determination which can be calculated from 3 possible angles using combined measurement. Gyroscope and accelerometer are primary sensors to control quadcopter attitude, but magnetometer sensor and GPS also used to enhance the stability during flight. This paper will focus on details of function and mathematical formula of every factor regarding fly control and comparative data of 2 types of orientation sensor used in this system.

  • Performance Analysis of An Experimental Micro Flexible Manufacturing System (FMS)
    1-8.
    Views:
    89

    Due to advanced technology, it is very important the performance of FMS for sensivity, production quality, repeatability and energy consumptions. Flexible manufacturing systems (FMSs) are the most automated and technologically sophisticated of the machine cell types used to implement cellular manufacturing. An FMS usually has multiple automated stations and is capable of variable routings among stations, while its flexibility allows it to operate as a mixed model system. The FMS concept integrates many of the advanced technologies that we met in previous units, including flexible automation, CNC machines, distributed computer control, and automated material handling and storage.

    In this experimental investigation, vibration and accelerations analysis of an experimental FMS with 5 degrees of freedom robot manipulator are presented. Firstly, experimental measurement of accelerations and vibrations are trained with a vibration measurement system and sensors. However, the process of production of part is a cycle of exact production time.

  • Electric Vehicle Modeling and Simulation of Volkswagen Crafter with 2.0 TDI CR Diesel Engine: VW Vehicle 2020 Based PMSM Propulsion
    1-6
    Views:
    379

    The Internal Combustion Engine (ICE) used by conventional vehicles is one of the major causes of environmental global warming and air pollutions. However, the emission of toxic gases is harmful to the living. Electric propulsion has been developed in modern electric vehicles to replace the ICE.

    The research is aimed at using both Simulink and SIMSCAPE toolboxes in a MATLAB to model the vehicle. This research proposes a Volkswagen (VW) crafter with a 2.0 diesel TDI CR engine, manufactured in 2020. An electric power train, a rear-wheel driven, based on Permanent Magnet Synchronous Motor (PMSM) was designed to replace the front-wheel driven, diesel engine of the VW conventional vehicle.

    In this research, a Nissan leaf battery of a nominal voltage of 360 V, 24 kWh capacity was modeled to serve as the energy source of the overall system. A New European Drive Cycle (NEDC) was used in this research. Another test input such as a ramp was also used to test the vehicle under different road conditions. However, a Proportional Integral (PI) controller was developed to control both the speed of the vehicle and that of the synchronous motor. Different drive cycles were used to test the vehicle. The vehicle demonstrated good tracking capability with each type of test. In addition, this research found out that there is approximately about 19% more benefit in terms of fuel economy of electric vehicles than the conventional vehicles.

  • Fault-tolerant Mechatronic Systems Development: a Biologically-inspired Approach
    1-5.
    Views:
    88

    Modern mechatronics embeds sophisticated control systems to meet increased performance and safety requirements. Timely fault detection is a critical requirement especially in safety-critical mechatronic applications, where a minor fault can evolve to catastrophic situations. In such cases it looks a high demand for more reliable, safety and fault-tolerant mechatronic systems development. The alternative to overcome all these bottlenecks was inspired from the biological world. By adapting the remarkable surviving and self-healing abilities of living entities it is possible to develop novel hardware systems suitable to fulfill in all the most demanding high reliability operation criteria’s and requirements. The paper presents a biologicallyinspired computing system based on a Field Programmable Gate Array (FPGA) network developed for high reliability mechatronic applications. By choosing a design strategy relying on a multi-cellular concept which outlines the versatility of biologically inspired technologies, task allocation or reliability problems can be solved with high efficiency. Real-time simulations prove that by implementing methods that imitate biological processes, high performance fault-tolerant and selfhealing hardware architectures can be experimented and tested. The benefits of this approach are also confirmed by experiments performed on a laboratory-prototype hardware platform. The results underline that techniques which imitate bio-inspired strategies can offer viable solutions in high reliability mechatronic systems development.

  • Industrial Robotics for ERP Controlled Smart Factories
    1-9.
    Views:
    255

    At product manufacturing the time-to-market factor, the profitability and the delivered value define the success of an enterprise. The increasing number of modules in Enterprise Resource Planning (ERP) programs is a facing problem, when there is a margin between the manufacturing cells and the ERP. Nowadays, the connection between the industrial machines and the ERP is an important requirement especially at automated warehouses and smart factories. Other concerns at manufacturing are the maintenance schedules of the machines, and flexible and easy reconfiguration of the production lines or the production cells. Information technology provides solutions and software environments to implement complex production supervisor ERPs at smart factories. At a production line or an automated warehouse several technical parameters and information can influence the planning of the resources at the enterprise, like maintenance, machine error, stockpile, product ID, defective product ratios, etc. When there is machine maintenance, the company needs to order the service parts, as well as schedule the service time and the stop of the production line. In case of a machine error, the system can estimate the length of the service time from error messages, and reorganize orders, transportation, or even maintenance schedules of other machines. Our plug and play type robot and industrial automation controller project gives a solution for these hardware demanding needs.

  • Time Domain Analysis and Spectral Methods for Determining Rotational Speed of Rotary Machines
    1-8.
    Views:
    72

    Accurate estimation of rotational speed of rotary machines has usually high priority in technical applications. This information should be calculated for many diagnostic algorithms, control or regulation processes. Incorrectly estimated values could occur serious disturbances in the operation of machines. Additional instrumentation often may be obstructed due to lack of space, but the construct of the machine may also affect the accuracy of measurement. In such cases, vibration diagnostic tools can be the disposal of difficulty. Mounting an acceleration sensor onto the outer surface of the measured device is not a major challenge. In most cases using time, frequency or quefrency domain analysis, it is possible to estimate the rotational speed of the analysed rotary machine. The calculated spectra and cepstra can help to determine the rotational speed more easily and more accurate than the time domain methods. This paper presents the comparison of these methods in terms of their usability and rotational speed estimation accuracy. A possible error of traditional optical measurement due to misalignment and benefits of the other methods are illustrated in this article via measured data series of a Brushless DC (BLDC) motor driven system.

Database Logos