Search
Search Results
-
Effects of water deficit on the growth and yield formation of maize (Zea mays L.)
143-148Views:167Maize (Zea mays L.) is the most important consuming cereal crop in the world after rice and wheat. This requires an understanding of various management practices as well as conditions that affect maize crop performance. Water deficit stress during crop production is one of the most serious threats to crop production in most parts of the world and drought stress or water deficit is an inevitable and recurring feature of global agriculture and it is against this background that field study of crops response to water deficit is very important to crop producer and researchers to maximize yield and improve crop production in this era of unpredicted climatic changes the world over.
A pot experiment was carried out to determine the effects of water deficit on growth and yield formation of maize. Two maize cultivars were used Xundan20 and Zhongdan5485. Three levels of soil water content were used in two stages of water control levels at two stages of the maize plant development
1. The JOINTING STAGE: A. CONTROL (CK) soil water content: from 70% to 80% of soil water holding capacity at the field, soil water content: from 55% to 65% of soil water holding capacity at the field, soil water content: from 40% to 50% of the Soil water holding capacity at the field.
2. The BIG FLARE PERIOD: A. CONTROL (CK) soil water content: from 75% to 85% of soil water holding capacity at the field, soil water content: from 58% to 68% of soil water holding capacity at the field, soil water content: from 45% to 55% of the soil water holding capacity at the field.
This research mainly studied the effects of water deficit on physiological, morphology and the agronomical characteristics of the maize plant at the different water stress levels.
The importance of these results in this experiment will enable plant producers to focus and have a fair idea as to which stage of the maize plant’s development that much attention must be given to in terms of water supply. -
Determining factors of test weight in maize (Zea mays L.)
40-42Views:118Most domestic maize production products are sold on markets abroad. Among the increasingly restrictive quality requirements, the demand for the measurement of test weight has also appeared. This measurement is not unfamiliar in the case of other cereals, such as wheat and barley, but it has not been applied widely in maize. It is likely for this reason that we have such little information and research available on this topic. In this study, we show the current state of this field with references from domestic and international literature.
The density of maize is the weight of a particular volume and the most frequent unit is the test weight (kg/hl). This physical quality factor plays important roles in the storage, transport and mill industries. The value of test weight is influenced by many factors. The most important ones are the moisture content of grains, drying temperature, drought, precipitation, early frost, and the hybrid characters of a given genotype (grain type, FAO number). In general, the grain with higher moisture content has lower test weight and the higher temperature during (above 82°C) desiccation also leads to unfavourable values. Factors such as a drought interval after flowering, early frost in the case of hybrids with higher FAO numbers, injuries by insects, as well as fungal infections also influence the structure and moisture content of the maize grain.
In the future, broader studies (hybrid testing, application of new agrotechnical elements) will be needed for understanding of the factors effecting test weight. -
Seed treatment with Bacillus bacteria improves maize production: a narrative review
105-111Views:180Maize (Zea mays L.) is an important crop in relation to its production and consumption. Production of maize is constrained by soil infertility and poor quality seed. Microbial technologies like seed treatment with Bacillus bacteria improves the productivity of maize on infertile soil. However, due to variations in maize growth environments and Bacillus species, this review was conducted to identify the common species of Bacillus species used for seed treatment, and provide an overview of the effect of seed treatment with Bacillus on maize growth and yield. Results show that Bacillus subtilis, Bacillus pumilus and Bacillus amyloliquefaciens were the dominant species used for seed treatment. Bacillus was used as both a biofertiliser and biopesticide. The conspicuous positive effects of Bacillus were in plant height, shoot and root length, and shoot dry matter depending on the species. In terms of grain yield, Bacillus subtilis (8502 kg ha-1), Bacillus amyloliquefaciens (6822 kg ha-1) and Bacillus safensis (5562 kg ha-1) were the bacterial species that had an overall pronounced effect. The highest increase in grain yield was in the interactive effect of Bacillus megaterium + Bacillus licheniformis (18.1%) and sole Bacillus subtilis (15.6%), while Bacillus pumilus reduced grain yield by 4.8%. This shows that the improvement of maize productivity using Bacillus bacteria requires careful selection of the species for seed treatment.
-
Comparison of RAPD and AFLP Analysis in Some Maize (Zea mays L.) Lines and Hybrids
3-7Views:104The use of molecular markers to enhance plant breeding efforts is being widely studied. DNA-based fingerprinting technologies (RAPD and AFLP) have proven useful in genetic similarity studies. We estimated different maize (Zea mays L.) inbred lines and hybrids originated from mutant ones based on their genetic differences.
We carried out RAPD analysis with different primers and the 707 (CCCAACACCC) and 792 (CAACCCACAC) primers with 50% similarities provided quite good DNA fragments. By applying the DNA based-AFLP technique, we had very dense DNA fingerprinting. We differentiated 15-32 polymorphic bands, the highest number of bands were found in P-T/H-CA (32). AFLP seems to be the more efficient method of comparing genetic similarities/differences among different genotypes. -
Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
133-135Views:106We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
(2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
cropyear on chernozem soil with using appropriate agrotechnical elements. -
Study on the cold tolerance of maize (Zea mays L.) inbred lines in Phytotron
41-45Views:87Maize has come a long way from the tropics to the temperate zone. In the beginning, the spreading of maize was prevented by its sensitivity to cold. Improved cold tolerance at germination is one of the most important conditions for early sowing. The advantage of cold tolerant hybrids is that they can be sown earlier, allowing longer growing seasons and higher yields, due to the fact that the most sensitive period in terms of water requirements, flowering, takes place earlier, i.e. before the onset of summer drought and heat.
In Martonvásár, continuous research is carried out to improve the cold tolerance of maize. In the present experiment, the cold tolerance of 30 genetically different maize inbred lines was investigated in a Phytotron climate chamber (PGV-36). The aim of our research is to identify cold tolerant lines that can be used as parental components to produce proper cold tolerant hybrids and/or as sources of starting materials for new cold tolerant inbred lines. After observing and evaluating changes in phenological traits under cold-test, the results of the cold-tolerance traits of interest have been used to highlight several inbred lines that could be good starting materials for further research on genetic selection for cold tolerance.
-
Effect of tillage practices, fertilizer treatments and crop rotation on yield of maize (Zea mays L.) hybrids
43-48Views:190This research was conducted at the University of Debrecen Látókép Research Station and is part of an ongoing long-term polyfactorial experiment. The impact of three tillage systems (Mouldboard plowing-MT, Strip tillage-ST, Ripper tillage-RT) and two levels of fertilizer treatments (N80 kg ha-1, N160 kg ha-1) along with a control (N0 kg ha-1) on the yield of maize hybrids (Armagnac- FAO 490 & Loupiac-FAO 380) cultivated in rotation with winter wheat was evaluated during a two-year period (2017–2018).
Amongst the three tillage treatments evaluated, ripper tillage (RT) had the highest average yield (10.14 t ha-1) followed by mouldboard tillage (MT) and strip tillage (ST) with 9.84 and 9.21 t ha-1 respectively. Yield difference between RT and MT was not significant (P>0.05), as compared to ST (P<0.05). Soil moisture content varied significantly with tillage practices and was highest in ST, followed by RT and MT (ST>RT>MT). Yield of RT was 7–9% higher than MT in monoculture plots, while MT reign superior in biculture plots (monoculture: RT>MT>ST; biculture: MT>RT>ST).
A positive interaction between tillage and fertilization was observed, with higher yield variation (CV=40.70) in the non-fertilized (N0) plots, compared to those which received the N80 (CV=19.50) and N160 kg ha-1 (CV=11.59) treatments.
Incremental yield gain from increase fertilizer dosages was significantly higher in monoculture, compared to biculture. There was no significant difference in yield between N160 and N80 in the biculture plots (12.29 vs 12.02 t ha-1). However, in monoculture plots, N160 yield was 23% higher than the N80 kg ha-1 (N160=11.74 vs N80=9.56 t ha-1).
Mean yield of maize in rotation with winter wheat was 28% (2.47 tons) higher than monoculture maize. The greatest benefit of crop rotation was observed in the control plots (N0) with an incremental yield gain of 4.39 tons ha-1 over monculture maize (9.92 vs 5.43 t ha-1).
Yield increased with higher fertilizer dosages in irrigated plots. Fertilizer application greatly increased the yield of maize and accounted for 48.9% of yield variances. The highest yield (11.92 t ha-1) was obtained with N160 kg ha-1 treatment, followed by N80 kg ha-1 (10.38 t ha-1) and N0 kg ha-1 (6.89 t ha-1) respectively.
Overall mean yield difference between the two hybrids was not statistically significant, however, yield of FAO 380 was 3.9% higher (9.06 vs. 8.72 t ha-1) than FAO 490 in monoculture plots, while in biculture plots, FAO 490 was 4.1% higher than FAO 380.
Average yield in 2018 was 13.6% (1.24 t ha-1) higher than 2017 for the same set of agrotechnical inputs, thus, highlighting the significant effect of cropyear.
Armagnac (FAO 490) cultivated in rotation with winter wheat, under ripper tillage and N80 kg ha-1 is the best combination of treatments for optimum yield.
-
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
143-147Views:175In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.
Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.
The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.
In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.
The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.
However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.
As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.
-
Variability examination of photosynthetic pigment content and specific leaf area in individual maize (Zea mays L.) plants
153-157Views:223Currently, maize is one of the most important crops (Zea mays L.) both globally and in Hungary. We compared physiological parameters of a maize genotype – p9903 – at two different experimental sites in a field experiment. Furthermore, we examined these parameters’ variability in individual plants on the leaves with different ages. Absolute chlorophyll content of the leaves were analysed, separately that of chlorophyll a and chlorophyll b. We also measured the absolute carotenoid contents of leaves. Furthermore, we calculated these photosynthetic pigments’ content ratio. Specific leaf area (SLA) and dry matter weight were also measured in order to characterise plant production. The results obviously reflect the decreasing in the efficiency of photosynthetic apparatus on the low yield site. Otherwise, we identify significant differences only in certain cases of leaves.
-
Comparing the yield of maize (Zea mays L.) hybrids in organic and conventional agriculture
13-17Views:126The European Green Deal was published by the European Commission in 2019. The main aim of the program is to reach net zero greenhouse gas emissions by 2050, making Europe the first climate-neutral continent in the world. To achieve this, criteria are also set for agriculture: increasing the share of land under organic farming to 25%, reducing the use of fertilisers and pesticides. However, the benefits of organic farming are widely debated. The aim of our study was to compare the yield of maize (Zea mays L.) hybrids bred in Martonvasar in two different cropping environments. The silage yields of 20 different maize hybrids were evaluated in a three replicate small plot experiment in an organic field and an adjacent conventional field. The average green mass yield of the hybrids was 36,58 t ha-1 in the organic field and 43,03 t ha-1 in the conventional. The green mass yield in the organic area was 20% lower than in the conventional area, and the dry matter yield and digestible dry matter yield were about 18% lower. Hybrids of different maturity groups responded differently to organic cultivation. The yields of early hybrids decreased more and late hybrids less in the organic farming compared to the conventional production.
-
Examination of the chlorophyll content of maize hybrids of different maturity groups at different N fertiliser doses
159-162Views:127Nitrogen fertilisation is a critical point of maize production. Five hybrids of different maturity dates were examined in a field experiment, three treatments (different application dates) and three basic fertiliser doses (0, 60, 120 kg ha-1 N) were used. At the 6-leaf-stage of maize, each fertilisation level of the 2nd and 3rd treatment was given 30 kg N ha-1 fertiliser active ingredient in addition to the basic fertiliser doses with the exception of the control plots and further 30 kg N ha-1 fertiliser was applied at the 12-leaf-stage. The final fertiliser doses were 0, 90 and 150 kg N ha-1 in the second treatment and 0, 120 and 180 kg N ha-1 in the 3rd treatment. The whole amount of the basic fertiliser (ammonium nitrate) was applied in the spring, one month before sowing.
The relative chlorophyll content of the maize leaves was measured, with a Minolta SPAD-502 measurement device. The measurements were carried out at the 6-leaf growth stage (V6) of maize on the youngest fully developed leaf of the 6th, 7th and 8th plants from the second row of each plot.
There were significant differences in the SPAD-readings measured at the V6 phenophase of maize between the hybrids (p<0.001) and the fertiliser treatments (p<0.05). The regression analysis did not show any correlation between the SPAD-values and fertilisation.
The highest significant SPAD-reading and yield were obtained by applying 120 kg ha-1 N. As a result of the regression analysis performed on yield, it can be concluded that the correlation between fertilisation and yield in the 1st and 2nd treatment was moderately close (r=0.439, r=0.480) and it was close in the 3rd treatment (r=0.513). The correlation between the SPAD-readings and yield was the closes in the 2nd treatment (r=0.639), while the SPAD-value had a 40.9% influence on yield (p<0.001).
-
The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
39-49Views:109Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety. -
Development of a New Maize (Zea mays L.) Breeding Program
25-30Views:108Genetic manipulation may not replace any conventional method in crop breeding programs, but it can be an important adjunct to them. Plant regeneration via tissue culture is becoming increasingly more common in monocots such as corn (Zea mays L.). In vitro culturability and regeneration ability of corn decreased as homozigosity increased, which suggested that these two attributes were controlled primarily by dominant gene action. Pollen (gametophytic) selection for resistance to aflatoxin in corn can greatly facilitate recurrent selection and screening of germplasm for resistance at a much less cost and shorter time than field testing. Integration of in vivo and in vitro techniques in maize breeding program has been developed to obtain desirable agronomic attributes, speed up the breeding process and enhance the genes responsible for them. The efficiency of anther and tissue cultures in most cereals such as maize and wheat have reached the stage where it can be used in breeding programs to some extent and many new cultivars produced by genetic manipulation have now reached the market.
-
Ecotoxicological impact of DON toxin on maize (Zea mays L.) germination
35-40Views:196Fusarium graminearum is one of the most significant arable pathogen in Hungary, and various types of trichothecene mycotoxins (mostly DON, deoxynivalenol) are detected most commonly in cereals (Biró et al., 2011). Fusarium infection and mycotoxin production could not be eliminated, and infected maize by Fusarium sp. cannot be exploited as food, seed, or animal feed. However it can be raw material of biogas production. In this research we would like to investigate the content and effect of the toxin in the end product of biogas production on plant germination. The Fusarium sp. can cause mildew and seedling mortality in seed of maize (Zea mays L.), so we examine the effect of this on germination. In preliminary examination Fusarium sp. was not detected in the bioreactor of the Institute after the retention time (30 day), however it can be assumed that during the hydrolysis of the fungus growth and mycotoxin production also increased exponentially. There were no appropriate tools to detect the toxin in the end product of biogas production so modelling of anaerobic hydrolysis was necessary. The effects of hydrolyzed product for germination were also detected.
-
The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
205-208Views:308Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.
-
The effect of hybrid, nutrient-supply and irrigation on the grain moisture content at harvest and the starch-content of maize (Zea mays L.)
89-95Views:115Maize is a worldwide dominant plant. According to nowadays plant production principles it is important to investigate and optimize the site-specific nutrient-supply and other production factors, such as hybrid and irrigation, in the case of this plant as well.
At the Research Institute of the University of Debrecen, Center of Agricultural Sciences and Engineering, at Látókép the effect of nutrient-supply and irrigation on the quantity and quality parameters of different hybrids were investigated in a small plot long-term field experiment. In this paper we introduce the results regarding the corn moisture-content and the starch content of the yield.
We have chosen three maize hybrids – that have been bread in Martonvásár – for our investigations. The effect of macronutrients is investigated in this experiment on five levels. The half of the experimental area can be irrigated during the vegetation period – whenever it is needed – by linear irrigation equipment, but on the other half only the water amount originating from the precipitation can be used by plants.
In the year 2008 the hybrid affected the grain moisture content at P=0.1% level, while nutrient-supply had an effect at P=10% significance level. We haven’t revealed either any effect of irrigation or of interrelationship between production factors. It can be stated that there are differences between the hybrids on each nutrient-supply and on both irrigation levels. The grain moisture content increased parallel to the longer vegetation
periods.
The starch content of maize is mostly affected by the hybrid,
so on P=0.1% significance level. Regarding our results, it can be
stated, that the starch content shows a decreasing tendency
parallel to the longer vegetation periods. -
Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
5-9Views:96Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
which is grown all over the world.
In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
significantly reduced the growth, chlorophyll contents of monocots and dicots alike. -
Gene Bank Developed by Induced Mutation for Selection
45-49Views:84Heterosis breeding in maize caused gene erosion by using uniform inbred lines. In order to strengthen the genetic base, we established a gene bank containing lines with broad genetic variability, resistance and adaptability. The maize gene bank is a result of our work in the past two decades.
The gene bank originated from treatments of maize seeds of hybrids and inbred lines with fast neutrons. The 1500 maize lines have great genetic variability which can be exploited after strict assessment and selection. As a result of the past several years, P 26, P 61 and P 62 lines have been released after DUS investigation in 2001. -
Evaluation of the correlation between SPAD readings and absolute chlorophyll content of maize under different nitrogen supply conditions
121-126Views:379Currently, one of the most important objectives of agriculture is to maintain the principles of the sustainability. The use of precision technologies in agriculture belongs to this topic. The use of precision technologies is increasingly widespread in the cultivation of various agricultural crops, including maize. Sensing is an important part of these techniques. In our experiment we compared two methods: measuring relative chlorophyll content and the method of determine the extractable chlorophylls. The experimental plant was maize (Zea mays L.) and the measurements were performed at an early development stage (V8) of three genotypes. Three levels of nitrogen (0; 80; 160 kg ha-1) were applied during the experiment. The relative chlorophyll content was measured by SPAD-502 (Minolta, Japan) and a handheld GreenSeeker (Trimble, USA) device. The extractable total chlorophyll content decreased in parallel with the increased nitrogen level. The obtained SPAD values were diversified furthermore the NDVI values have not been changed for the effect of different nitrogen fertilization. In the early stages of development of maize, these parameters need to be complemented with other measurements to provide reliable information about the crops nitrogen status.
-
Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
11-14Views:228In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.
In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.
In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.
In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.
-
Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
35-41Views:381The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.
The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.
The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.
The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.
Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.
-
Challenges and limtations of site specific crop production applications of wheat and maize
101-104Views:136The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.
-
Comparative examination of the tillage systems of maize on meadow chernozem soil
21-24Views:177Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively.
In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.
-
Investigation of genetic diversity in irradiated maize lines and its relation to hybrid performance
20-26Views:213Knowledge of genetic diversity among available parental lines is fundamental for successful hybrid maize breeding. The aims of this study were to estimate (1) genetic similarity (GS) and genetic distance (GD) (based on Jaccard index) in four maize inbreed lines; (2) to classify the lines according to their GD and GS; (3) to determine hybrid performance based on GD and heterosis for yield ability in 4x4 full diallel system. We used morphological description and AFLP (amplified fragment length polymorphisms) for estimation genetic polymorphism in four maize inbred lines. We estimated the applicability of genetic similarity in SC and reciproc hybrids for prediction of their performance.
Three primer combinations were used to obtain AFLP markers, producing 207 bands, 70 of whit were polimorphic. The dendogram based on genetic similarities (GS) and genetic distance (GD) and morphological description separated four inbred lines into well-defined groups. Morphological description just with AFLP analysis showed reliable results. In view of genetic distance, the UDL 1 line and their linear and reciprocal crosses showed significant heterosis effect, which was confirmed by heterosis calculation based on grain yield. -
Investigation of directions of crossing in maize (Zea mays L.)
43-48Views:104In Hungary, we examined eight features of twelve direct cross hybrids over a period of three years. The twelve hybrids were derived from direct and reciprocal crosses of four parental lines. We did not find significant differences in the cases of stalk diameter and leaf number in the average of 3 years in any of the hybrids. Statistically explainable differences in primary branches were observed in hybrids UDH5 and UDH8 and also in UDH6 and UDH11. It was evident in both instances that degrees of heterosis in reciprocal crosses far exceeded those of direct ones. High tassel branch number was dominant over the low one; consequently, parents with higher tassel numbers enforced their effects during the formation of this trait in hybrids. We experienced positive correlation (r=0.67**) between plant height and main ear height. A positive correlation (r=0.89**) was also found between the tassel length of the main axis above the lowest and the upper side branch. We observed a medium correlation (r=-0.42**) between the number of primary lateral branches and plant height. The number of primary lateral branches showed the highest heterosis. These results can be utilized in practical selection and seed production.