Search

Published After
Published Before

Search Results

  • Investigation of Potato (Solanum tuberosum L.) Salt Tolerance and Callus Induction in vitro
    51-55
    Views:
    90

    Potato production plays an important role in Hungary and the other countries of Europe. Consumption of potato products has increased to a large extent during the past several years. We can satisfy market demands with high quality and virus-free varieties.
    Results of potato production depend on tolerance/resistance to abiotic stresses. In many cases, increased concentration of NaCl causes yield loss. Selection of salt tolerant varieties proved to be a difficult problem. Nowadays, the salt tolerance of potato varieties can be determined by cell/tissue/ protoplast techniques. Somaclonal variation provides a great potential for selection of lines resistant to salt stress. In vitro shoots and callus, derived plantlets selected for salt tolerance/resistance provide material for micropropagation.
    In vitro shoot development of potato (Solanum tuberosum L. cv. Kuroda) was investigated under salt stress (40 mM, 80 mM, 120 mM NaCl) conditions. Shoot heights of plantlets cultured under salt conditions were lower than the control through the investigation. However, the shoot development of plantlets originated from in vitro meristems was almost at the same level as the control under 40 mM NaCl concentration.
    There was no significant difference in the in vitro biomass production between control and treatment with 40 mM NaCl concentration. We measured a significant decrease in dry-matter mass under 120 mM NaCl concentration. There is a need for more investigation of different genotypes and for a conclusion as to whether in vitro tolerance could occur under in vivo circumstances in plants originated from somaclones as well.
    Under in vitro conditions, we investigated shoot and leaf callus initiation using different culture media with different 2,4-D concentrations. Under dark conditions, callus induction of shoot/leaf decreased as the 2,4-D concentrations increased.
    In light conditions, there was a little callus induction, while callus initiation from the shoot from 5 μM to 12 μM 2,4-D concentration showed a significant increase

  • Slight damage of the great green bush-cricket (Tettigonia viridissima) (Orthoptera: Tettigoniidae) in some Hungarian maize fields
    65-70
    Views:
    215

    Characteristic cricket damage was observed in two maize fields in northern Hungary, at Máriabesnyő, a district of Gödöllő. The damage level of the two fields did not differ significantly and continual monitoring of field1 showed also a stable infestation level. T. viridissima nymphs and a female were found and observed as feeding on maize plants. The crickets must have disappeared after 18.07. because no more fresh damage was observed after this date. The chewing’s number about on one and two % of the examined plants amounted one and six a plant and their size was between one and eight cm2. This infestation was quite little and might have caused apparently no yield loss. Compared this damage of T. viridissima with former Hungarian experience, this was the usual negligible damage despite the explicit draught in July and August 2015. As regards the global warming, orthopteran damage may be more obvious in the future.

  • A dual infection of two microscopic fungi on common milkweed (Asclepias syriaca) in Hajdúság region (East-Hungary)
    189-195
    Views:
    168

    Common milkweed (Asclepias syriaca L.) is one of the most noxious and invasive weed species in Hungary. A. syriaca invades arable lands, horticultural and forestry plantations, natural and semi-natural habitats too. In cases of field crops it can cause considerable yield losses mostly in maize (2–10%), soybean (12–32%) and sorghum (4–29%), but only with high rate of coverage. It can also increase these problems that the common milkweed can be serve as reservoir and host for viruses, other pathogens and pests.
    Because of the importance of common milkweed and in spite of demand to develop effective biological control, until now has not been developed a proper control program against A. syriaca. The aim of our research was to identify the necrotrophic fungal pathogens, which were involved in notable disease occurrence on this weed in different parts of Hajdúság region of Eastern-Hungary in 2016.
    To the isolation of fungi from leaves and their identification were based on morphological colony characters on potato dextrose agar (PDA) and Sabouraud dextrose agar (SDA). To the description of conidia features were used PDA for Alternaria and synthetic low-nutrient agar (SNA) for Fusarium species, respectively. The examination of axenic cultures revealed that the fungi isolated from the leaves of common milkweed were Fusarium sporotrichioides and Alternaria alternata.

  • Promising Leuce poplar clones in sandy ridges between the rivers Danube and Tisza in Hungary: a case study
    111-113
    Views:
    214

    An intensive integrated research and development work has been carried out on the improvement of Leuce poplars including primarily the native white poplar (Populus alba L.) and its natural hybrid grey poplar (Populus × canescens). More than 70 percent of the Leuce poplar stands can be found on calcareous sandy sites in the Danube–Tisza region, so they play a significant role in the poplar management of this part of the country. The most important task ahead of Hungarian poplar growers is to improve the quality of poplar stands and plantations based on selecting new clones and cultivars. The growth and yield of four promising Leuce poplar clones was evaluated on a marginal site in central Hungary. The clones ‘H 425-4’ (Populus alba L. × Populus alba L.), and ‘H 758’ (Populus alba L. Mosonmagyaróvár 124) seem to be suitable for wood production, while the ‘H 427-3’ (Populus alba L. × Populus alba L. cv. Bolleana) and ‘H 422-9’ (Populus alba L. × Populus grandidentata (Michx)) clones (with decorative stem form) could be better used for tree lines and ornamental plantations.

  • Characterization of two rust fungi related to biological control concept in Hungary
    195-199
    Views:
    274

    Weeds cause serious problems in agriculture on a global scale. These plants reduce yield and the quality of crops by competing for water, nutrients and sunlight. The improper or excessive usage of herbicides have led to development of resistance in some weed species while contaminating the environment; therefore, biological control has an increasing role as an alternative method for controlling special weed species.

    The aim of this study is to make a brief review of biological control of weeds by pathogens and to characterize two rust fungi (Puccinia lagenophorae and Puccinia xanthii) which are broadly examined recently in a biological control concept and have been found on their hosts, such as common groundsel (Senecio vulgaris L.) and common cocklebur (Xanthium strumarium L.), two common and difficult to manage weeds both in horticultural and agricultural lands also in Hungary.

  • Inhibition of the spread of Sclerotinia sclerotiorum in aquaponics
    5-8
    Views:
    201

    Sclerotinia sclerotiorum, which causes white mold, is a widespread pathogen. In 2020, a new host plant of this fungus, the watercress (Nasturtium officinale) was identified in Hungary in an aquaponic system. During the cultivation of watercress S. sclerotiorum was detected on the plant, the fungus caused a 30% yield loss. Fungicides should not be used against fungi in aquaponic systems. Non-chemical methods of integrated pest management should be used. These include biological control (resistant species, predators, pathogens, antagonist microorganisms), manipulation of physical barriers, traps, and the physical environment. In the aquaponic system, the removal of the growing medium (expanded clay aggregate pellets) solved the damage of Sclerotinia sclerotiorum 100%. By removing the expanded clay aggregate pellets, the environmental conditions became unfavorable for the development and further spread of the S. sclerotium fungus.

  • Results of Sulphur Fertilization Experiment with Oilseed Rape
    174-178
    Views:
    62

    The rape is definitely a sulphur-demanding crop, which yield and the quality of its oil is threaten by the emerging shortage of sulphur nowadays. We made sulphur fertilising trials on two places in the northeastern rape growing area (in Felsőzsolca and Mezőkövesd), in the season 2001/2002. We compared the result the 5 five treating set in 2 repeats on brown forest soil with the results of the control plots. We used FitoHorm 32 S sulphur solution as sulphur fertiliser, with the dose of 3, 6 and 10 litres per hectare, as well as the joint effects of sulphur and boron; and the effect of boron alone. On the assessment of our results we looked for relation between the sulphur fertilising, the seed production, the oil content and the protein content.

  • The effect of supplemental pig milk replacer on carbohydrate metabolism – a review
    67-71
    Views:
    194

    The aim of this review is to examine the effect of milk supplementation on pigs’ carbohydrate metabolism. These parameters regulate the growth of piglets, the nutrient intake and the period of pre-weaning. Due to the increased litter size, the sow milk yield reaches an individual maximum. The individual maximum has not increased proportionally with the number of piglets born alive. The use of liquid milk supplementation may give the opportunity to keep these large litters. The examined hormones are insulin, insulin-like growth factor, growth hormone, growth hormone releasing hormone, ghrelin and leptin. This review seeks to find these hormones’ interactions.

  • A forgotten sour cherry pest, the stone fruit weevil (Anthonomus /Furcipes/ rectirostis L.) appeared again
    104-106
    Views:
    69

    The stone fruit weewil (Anthonomus rectirostris L.) has been known as the kernel pest of the wild cherry in Hungary. There have been no data about its harm on sour cherry (Prunus cerasus L.) in our country, yet. 5-10% of stone infection has been observed on some sour cherry trees (cultivars: Debreceni bőtermő, Újfehértói fürtös) in the eastern side of an orchard at Debrecen-Józsa adjacent to a wood in early July 2011. The damage can be in connection with the fact that the yield has not been harvested for years.

  • Application fields of wood as a renewable energy source in Europe
    31-35
    Views:
    106

    Fuelwood, and wood wastes provide almost half of the renewable energy production of the European Union. Enhancing the use of wood in renewable energy production has more constraint than wind- or solar energy. Forests in the EU member states are sustainably used, they are increasing both in terms of area, and growing stocks. There are possibilities to enhance the fallings and use more fuelwood. Short rotation coppices could fulfill the long term demand for fuelwood; because these plantations surpass the dendromass yield of forests.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    126

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Challenges and agroecological approaches in crop production
    75-89
    Views:
    165

    Never has the need been greater for an ecosystem approach to agriculture. As our global population exceeds 9 billion in the next 30 years, with a concomitant demand for agricultural products, ever more pressure will be placed on our agricultural systems. Meanwhile, climate change is altering the ecological settings in which agriculture is practiced, demanding adaptation. Knowledge generated by long-term research will help to address one of the grand challenges of our time: how to meet sustainably the growing world demand for agricultural products – in a way that minimizes environmental harm and enhances the delivery of a diverse array of ecosystem services.

  • Mass occurrence of a Phoma-like fungus on common ragweed (Ambrosia artemisiifolia) in Hajdúság region, East Hungary
    55-60
    Views:
    207

    Common ragweed (Ambrosia artemisiifolia L.) is one of the most important, allergenic weed species in Hungary. A. artemisiifolia invades both a broad range of often disturbed areas (brownfields) and either undisturbed ones like waste lands, roadsides, riverbanks and railway tracks. In field crops it can cause considerable yield losses mainly in sunflower, maize, cereals and soybean. In Hungary many inhabitants suffer from allergy caused by Ambrosia pollen which results a serious human-health risk. The aim of the control is to prevent flowering and seed propagation of A. artemisiifolia. Until now the occurrence of numerous pathogenic fungi which attack common ragweed plants have been identified in Hungary, however there is not yet available biological weed control program because of shortage in acceptable effectiveness, and endangering cultural plant species. During our weed surveys in the region of Hajdúság (East-Hungary) we found numerous common ragweed plants showing heavy necrotic lesions on leaves and stems. The objective of this study was to identify the fungus which was isolated from diseased tissues of common ragweed (A. artemisiifolia). The identification of fungus based on morphological characters of colonies and features of conidia and chlamydospores developed on malt extract agar (MEA) plates. After examination of axenic cultures we revealed that the fungus isolated from the leaves ands stems of common ragweed was a Phoma-like species.

  • Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress
    105-110
    Views:
    202

    Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

  • Evaluation of Soil Degradation Based on High Resolution Remote Sensing Data
    145-148
    Views:
    77

    Soil salinity is the main problem of soil degradation in the Grate Plain with cultivated area of 20% affected. Its influence is accelerated on the water managed and irrigated lands. Remote sensing can significantly contribute to detecting temporal changes of salt-related surface features. We have chosen a farm where intensive crop cultivation takes place as a test site as soil degradation can be intensive as a result of land use and irrigation. In order to evaluate soil salt content and biomass analysis, we gathered detailed data from an 100x250 m area. We analyzed the salinity property of the samples. In our research we used a TETRACAM ADC multispectral camera to take high resolution images (0,2-0,5 m) of low altitude (300-500 m). A Normalized Vegetation Index was computed from near infrared (750-950 nm) and red (620-750 nm) bands. This data was compared with the samples of investigated area. Analyzing the images, we evaluated image reliability, and the connection between the bands and the soil properties (pH, salt content). A strong correlation observed between NDVI and soil salinity (EC) makes the multispectral images suitable for construction of salinity map. A further strong correlation was determined between NDVI and yield.

  • Hydro-cultural growing of cut flower in greenhouse
    139-146
    Views:
    99

    The closed system hydro-cultural growing is environmentfriendly,  the chemical fertilizer used for nourishing material supply does not contaminate the soil water and it is possible to eliminate the chemical materials accumulating during the disinfection of the soil getting into the environment. It can be mechanized and regulated well so the optimum growing conditions can be fixed for the plant and as a consequence higher yield can be reached both for the carnation and for Zantedeschia and for Rosa. Growing method with saving both the nourishing material and the water. Taking all the above into consideration timing is easier and better, it can be programmed better than the traditional chemo-cultural growing.

  • Early evaluation of use of fermented chicken manure products in practice of apple nutrient management
    195-198
    Views:
    106

    According to the Green Deal efforts, the importance and relevance of organic fertilization will increase in the near future. Therefore, the investigation of the effects of different organic fertilizers on soil productivity and nutrient supply is a priority area of agricultural research. Organic fertilizer experiment was conducted in an eight-year-old apple (Malus domestica Borkh.) orchard at Debrecen-Pallag. In the trial Pinova cultivar was used. In this study, two different fermented chicken manure products were added to the soil (in 20 cm depth) to test their effects on soil nutrient status, plant uptake and fruit quality. It was found that the applied treatments slightly increased the pH and nutrient levels in almost all cases, but significant effect was not observed in all treatments compared to the control. Leaf nutrient contents (N, P, K, Ca and Mg) were measured in the experiment. Leaf nutrient status was not affected by the fermented chicken manure treatments. However, used treatments had strong effects on the fruit characteristics and inner parameters, such as fruit diameter and Brix value. Moreover, it was established that the applied organic fertilizers increased the yield significantly.

  • Effects of some herbicides on the microbiological characteristics of soil nitrogen cycle under maize plantation
    93-100
    Views:
    71

    Nitrogen is a key element for the living organisms and influence not only for the quantity but for the quality of the yield, considerable. Availability of nitrogen from the soil is influenced by several microbiological processes of the Nitrogen-cycle. Among the intensive agricultural production the herbicide application cannot be omitted more information needs therefore about the inhibitor effect of herbicides on the different microorganisms.
    An experiment was set up on calcareous chernozem soil under maize culture. Effect of four different herbicides (Acenit, Frontier, Merlin, and Wing) was investigated. The effect of herbicides was measured to four microbiological parameters of the Nitrogencycle (abundance of nitrifying bacteria, nitrate solubilisation, biomass nitrogen and urease enzyme activity). There were singledouble-  and five times of recommended doses of herbicides applied for two onsecutive vegetation periods.
    From the results of the different doses of herbicides, the following can be stated:
    – The Acenit has a stimulating effect on nitrifying bacteria in general. The Frontier and Merlin also influenced the quantity of nitrifyers, however in certain cases decreased in another cases increased the number of bacteria.
    – The double doses and five times doses of herbicides was found to be increasing the nitrate content of soil, -especially in 2006.
    – The quantity of microbial biomass nitrogen increased in the 60% of treatments and decreased in the 40% of the treatments.
    – Except of the result of Wing in 2006 and Merlin in 2005, the effect of simple dose herbicides was the smallest on the urease enzyme activity. According to the results the effect of Merlin was positive; the effect of Wing was negative on the soil enzyme’s activity.
    Regarding the application of four different herbicides in three  different doses on the microbiological parameters of soil (at two consecutive years-) in 39% of the treatments has resulted a significant inhibitory effect, 28% of the treatments, however have significant stimulating effect on the parameters measured. More than 50% of the inhibitory effect was measured in case of the Wing, at more than 50% of the Frontier the microbiological parameters have not changed.

  • The effects of fertilization on the protein related properties of winter wheat
    67-69
    Views:
    128

    The yield and quality of wheat are mainly determined by the plant production system, thus we studied the effect of mineral fertilization.

    The field trials were set up in 1983 at the Látókép Research Institute of the University of Debrecen. We examined effect of different Nfertilizer doses (60 kg ha-1 N/P/K, 120 kg ha-1 N/P/K) on Lupus, Mv Toldi and GK Csillag's protein properties in 2012. During the tests, three quality parameters were determined: wet gluten content (%), wet gluten spread (mm/h) and gluten index (%). In the experiment the effect of different doses of N-fertilizers significantly influenced by the wet gluten content and gluten index of Lupus.

  • Examination of resistance to Sclerotinia stalk and head rot in sunflower (Helianthus annuus L.) hybrids
    34-37
    Views:
    135

    Nowadays, phytopathogenic fungi cause the most serious yield loss in open field cultures, and sunflower (Helianthus annuus) is no exception to this phenomenon. Sclerotinia stalk and head rot (Sclerotinia sclerotiorum) is present in the whole area of Hungary, and can cause serious financial loss. In our experiment, sunflower hybrids were tested for resistance to Sclerotinia sclerotiorum infection. 16 sunflower hybrids were examined at the Experimental Breeding Site in Jászboldogháza. Pesticide treatment and also nutrient replacement were applied on the sunflower fields.

  • Challenges – the impact of climate change on the nutritional management of Hungarian orchards
    323-334
    Views:
    213

    The agricultural sector is increasingly exposed to both environmental and economic risks due to the phenomena of climate change and climate variability. Fruit growth and productivity are adversely affected by nature’s wrath in the form of various abiotic stress factors. Climate change and extreme climatic events are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. It is no doubt that frequency of unexpected climatic events and their growing rate result in an increasing amount of problems for fruit growers globally. Today, climate change impacts are the most serious problems for Hungarian fruit growers as well. It can be stated that the nutrient demand of fruit trees can be supplied only under even worse conditions.

    Therefore, it is so important to know and apply adaptation and mitigation strategies in horticulture to improve fruit quality and yield. In the last ten years, at the Faculty of Agricultural and Food Sciences and Environmental Management at University of Debrecen expanded studies have been made to prove the importance of groundcover management in horticultural applications. In this mini review paper, is presented, how the university's researches contributed to the expansion of knowledge of preservation of soil moisture and what advice we can provide for fruit growers to face the challenges of climate change.

  • Influence of temperature and variety on seed germination of soybean (Glycine max L. Merr) at different germination times
    5-12
    Views:
    77

    Seed germination is an important stage in crop development that affects plant performance, crop yield, and quality. Many factors influence seed germination, and one of the most important factors is temperature. The closer the temperature is to the optimum, the faster germination will occur. Temperature affects seed germination in various plants and varies depending on the variety. Therefore, the effect of temperature on seed germination is necessary to investigate, also for soybean varieties. Soybean is one of the world's most valuable oil-seed crops. Generally, proper seedling establishment and germination of soybean seeds are crucial processes in the survival and growth cycle of the crop. Thus, a study was done to investigate the influence of temperature and variety on soybean seed germination at different times after sowing. The experiment was carried out at the Institute of Agronomy, Hungarian University of Agriculture and Life Sciences (MATE), Crop Production Laboratory. Seeds of two soybean varieties were subjected to three different temperatures: 15, 25, and 35 °C, and two soybean varieties, Martina and Johanna were tested. There were four germination times based on the days after sowing: Days 3, 5, 7, and 9. This experiment was set up with a completely randomized block design and four replications. According to the findings of this study, the Martina variety showed a better germination rate as well as higher vigor and viability than the Johanna variety in the first 12 days after sowing. At temperatures of 15 °C and 25 °C, both varieties achieved comparable percentages of viability, but they were more vigorous at 25 °C due to better total seedling length. Thus, the information gained from this study will indirectly determine and confirm the proper temperature for the initial growth of the Martina and Johanna varieties.

  • The Examination of Some Determining Elements of Efficient Practical Sweet Corn Growing
    81-85
    Views:
    123

    We did the detailed agronomy examination and assessment of sweet corn cropping technology by analysing the data of TONAVAR Ltd. The Ltd. developed a special sowing construction which is based on band application of main sowing and double growing. In main sowing they use super sweet hybrids, and in double growing they use normal sweet varieties. In double growing sugar peas and the sweet corn can be cultivated together successfully. In every two years appearing sugar peas has a good effect on the sweet corn growing in monoculture. At the same time
    the long-term successfulness of this questionable onto the illnesses of the peas because of the considerable sensitivity.
    According to our examinations in main sowing the optimal period is between May 1. and 30., and in double growing the optimal period of sowing is between June 1. and 20. The optimal plant density is different too for the two sowing time. For super sweet hybrids the optimal plant number is 60-63 thousand/ha and for the normal sweet that is 65 thousand/ha.
    Our examinations show that soil pest (defence with soil sterilisation in sowing time), Diabrotica virgifera, Helivoverpa armigera, Ostrinia nubialis are the greatest danger for the sweet corn quantity and quality.
    The use of herbicides is the most efficient in the postemergens in main sowing and preemergens in second crop.
    Our examination shows that the efficient sweet corn growing cannot be imagined without irrigation. The most efficient irrigation is in main sowing in the critical fenophase of crop time. In double growing the initial irrigation, and the crop irrigation are the most efficient. Based on the production data verifiable that beside the application of the discribed growing technology in the 2005-2007 years the average yield was 20,9t/ha of main sowing, and 17,8t/ha of second crop on chernozem soil in the Hajdúság.