Search

Published After
Published Before

Search Results

  • Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
    5-9
    Views:
    82

    Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
    Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
    73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
    The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
    types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
    plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
    availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
    Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
    has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
    Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
    deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
    deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
    which is grown all over the world.
    In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
    fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
    plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
    chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
    It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
    significantly reduced the growth, chlorophyll contents of monocots and dicots alike.

  • Loss and Disease Development of Monilinia fructigena (Aderh. & Ruhl.) Honey in an Organic Apple Orchard
    6-8
    Views:
    143

    In a two-year-study, yield loss and temporal development of incidence of Monilinia fructigena were quantified in organic apple orchards and the importance of fruit wounding agents was determined. The first infected fruits were observed at the beginning of August in 2001 and 2002. Disease development was continuous until fruit harvest in both years. Pre-harvest yield loss caused by Monilinia fructigena amounted on average 27.2% in 2001 and 41.6% in 2002 by fruit harvest. The growth rate of disease development was almost double in 2002 compared to 2001. All infected fruits were injured by wounding agents such as aboitic and mechanical injury factors, codling moth (Cydia pomonella), common earwig (Forficula auricularia) and birds. In this study, the most important wounding agents were codling moth and mechanical injury factors in organic apple orchards. In both years, our results showed that 70-80% of the infected fruits were damaged by codling moth in organic apple production. Moreover, 10-15% of the infected fruits were mechanically injured in the two years. Our results indicated that most of the damaged fruits fell on the orchard floor before harvest and they became an important secondary inoculum source of M. fructigena. Biological and practical implications of the results are discussed.

  • Agronomical and Economic Evaluation of Different Soil Cultivation Systems
    17-22
    Views:
    72

    In the interest of profitable plant production and environmental protection we have to make an effort to protect and improve the productivity of our soils while moderating production limiting factors. Due to different soil cultivation methods, the quantity of yield and required expenses also differ.
    We examined the production costs in four different production technology systems. Overall, it can be said that farming standards are good, since cost prices were low (2001: 14-15 HUF/kg, 2002: 15-21 HUF/kg, 2003: 39-49 HUF/kg) in the case of all main products per 1 kg. Cost prices were lowest in the case of direct sowing, probably due to low machinery costs.
    All economic indicators have to be compared when choosing the most suitable production technology in a specific farming environment.

  • The effect of fertilization and plant protection in sunflower (Helianthus annuus L.) production
    57-63
    Views:
    220

     Sunflower is the most important oil crop in Europe which is grown on the biggest area of all the oil crops. The area of producing sunflowers in Hungary was changing to 524–704 thousand hectares in the past decade in comparison with approximately 100 thousand hectares in the 1970’s. In our experiment different sunflower hybrids were examined. The doses of fertilizers were the following in 2017 and 2018: 0–30–90–150 kg ha-1 N, 0-50-90-90 kg ha-1 P2O5 and 0–70–110–110 kg ha-1 K2O. Three different treatments of plant protection were used in the experiment to protect them from fungal infections. A rise in the dosage of nitrogen resulted in increasing infection. The biggest fungal infection was identified in 150 kg ha-1 N, 90 kg ha-1 P2O5 and 110 kg ha-1 K2O treatment. The largest infection was measured on plots without plant protection at the highest N doses, both in leaf and disc diseases. We measured the highest 41.25% in 2017 and 53.1% in 2018 Diaporthe helianthi infection, and 24.5% in 2017 and 25.5 % in 2018 Sclerotinia sclerotiorum disc infection in these plots. kg ha-1

    Average yield was changing between 2.96–4.67 t ha-1 in 2017/2018. The lowest yield was obtained in the absolute control plot (without plant protection and without nutrient) in both years, which was 2.96 t ha-1 in 2017 and 3.14 t ha-1. The yields increased due to growing nutrient supply and excellent plant protection. The highest yields were 3.67 t ha-1 in 2017 and 4.67 t ha-1 in 2018 (150 kg ha-1 N, 90 kg ha-1 P2O5 and 110 kg K2O active substance). Purpose of the experiment at analysing the impact of different treatments on the profitability of sunflower production.

     

  • Agronomical and economic evaluation of different soil cultivation systems
    47-52
    Views:
    58

    In the interest of profitable plant production and environmental protection, we have to make an effort to protect and improve the productivity of our soils while moderating production limiting factors. Due to different soil cultivation methods, the quantity of yield and required expenses also differ.
    We examined the production costs in four different production technology systems. Overall, it can be said that farming standards are good, since cost prices were low (2001: 14-15 HUF/kg, 2002:15-21 HUF/kg, 2003: 39-49 HUF/kg) in the case of all main products per 1 kg. Cost prices were lowest in the case of direct sowing, probably due to low machinery costs.
    All economic indicators have to be compared when choosing the most suitable production technology in a specific farming environment.

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    166

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    99

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Examination of plant number and sowing date in different crop years
    79-82
    Views:
    99

    We examinated three agrotechnical factors in 2011, 2012 and 2013 (sowing time, nutrient factor and plant density), as well as five different effects of genotypes on the crop of corn, on brown soil in the Hajdúság. The experiment was set next to the 47 main road in Debrecen, at the 6th kilometre stone.

    In the present processing I would like to touch on the effects of sowing time and plant density, as I do not have the chance to present the whole experiment results here. It is true for all three years that the humidity factors differ from the long years’ average, so the genotypes had different reactions on it. According to our results we found out that the late sowing time’s result had the most successful crop yield result with 9975 kg ha-1, while examining the plant density the result of the highest plant density proved to be the best with 9967 kg ha-1.

    We take the critical season in corns’ life cycle process into consideration when examining the results: June, July and August months’ humidity and temperature markers. According to the results in the tested 3 months we had 227 mm humidity with 10 days, when the average temperature was over 25 °C. The same factors in 2012 were 135.5 mm humidity with 37 days of average temperatures of 25 °C and in 2013 we recorded 102.5 mm humidity with 24 of these days.

    Our goal is to help the farmers in the Hajdúság with the results of our sowing times, hybrid choice and plant density results.

  • Agronomical and Economic Evaluation of Different Soil Cultivation Systems
    255-258
    Views:
    70

    In the interest of profitable plant production and environmental protection we have to make an effort to protect and improve the productivity of our soils while moderating production limiting factors. Due to different soil cultivation methods, the quantity of yield and required expenses also differ.
    We examined the production costs in four different production technology systems. Overall, it can be said that farming standards are good, since cost prices were low (2001: 14-15 HUF/kg, 2002: 15-21 HUF/kg, 2003: 39-49 HUF/kg) in the case of all main products per 1 kg. Cost prices were lowest in the case of direct sowing, probably due to low machinery costs.
    All economic indicators have to be compared when choosing the most suitable production technology in a specific farming environment.

  • Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
    133-135
    Views:
    87

    We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
    by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
    cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
    irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
    yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
    (2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
    crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
    N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
    models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
    cropyear on chernozem soil with using appropriate agrotechnical elements.

  • Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil
    63-69
    Views:
    205

    Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was
    N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.

  • Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
    49-53
    Views:
    167

    The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.

    The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.

  • The efficacy of combining paraffin oil with conventional fungicide treatments against grape powdery mildew in Eger
    173-180
    Views:
    111

    We aimed to test the combination of paraffin oil (PFO) with regular fungicide treatment to assess its efficacy against grape powdery mildew (GPM) in a small spraying experiment on two Vitis vinifera L. cultivars (Chardonnay and Kékfrankos) with different susceptibility to Erysiphe necator. The visual symptoms of GPM on leaves and clusters were examined at three phenological states. The harvest yield was characterized by two methods, data were analyzed with one-way ANOVA and Tukey post-hoc test. Regular fungicide treatment (CT) and its combinations with PFO showed better results in both varieties to repress GPM in 2015 relative to sole PFO treatments. Mean values of combined treatments were often lower than CT but did not differ significantly from each other. The same was observed in 2016, despite the higher pressure of GPM, and missed the third survey. No significant differences were detected between treatments in yield. In contrast, the mean cluster weight of CT and combined treatments resulted in (insignificantly) higher values in each variety and year. In summary, the sole PFO showed some disease control capability as reported earlier, but this effect was greatly affected by the given vintage. Combining PFO with CT resulted in increased protection against GPM relative to the solely applied fungicides. However, this effect was not significant in all cases. It also depended on the vintage and cultivar characteristics. The beneficial impact of paraffin oil as an additive to CT may be due to the induction of plant stress responses and/or its ability to support the adherence and absorption of the combined agents.

  • Long-term experiments on chernozem soil in the University of Debrecen
    357-369
    Views:
    201

    The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.

    Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.

  • The role of Debrecen maize hybrids in competitive production
    19-21
    Views:
    60

    I examined the effects of plant density and fertilisation on the yield of the maize hybrid Debreceni 377 SC, developed by the Agrárgazdaság Ltd., using the 3 year data sequence of a long term experiment set up at the Látókép experimental station of DU Center for Agricultural Sciences in years with average precipitation supply.
    Based on the evaluation of my research results, I found that the application of higher plant densities was more favourable in years with average or higher than average precipitation supply. During the examination of fertilisation effects, it was verified that surplus yield was realised in most cases where smaller fertilisation dosage, 120 kg per hectare active substance was applied.

  • Effects of the cropyear and the agronomical factors on agronomical elements of different sweet corn (Zea Mays L. convar. saccharata Koern.) genotypes in long-term experiment
    105-110
    Views:
    97

    In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.

  • Comparison of the technological background of aquaponic systems
    47-52
    Views:
    257

    Aquaponics is the combined culture of fish and plants in recirculating aquaculture systems, an ecologically sustainable horticultural production technique with long traditions.

    The objective of this study is to compare flood-and- drain, and the water crossflow system and examine the differences in the water quality, fish yield and plant growth parameters for Common carp (Cyprinus carpio) and basil (Ocimum basilicum). During the study, water quality parameters of two treatments were compared in temperatures, pH, EC and NON were significantly different (p <0.05). Leaf area of the basil plants grew to an average of 20.37 cm2 (± 9.02 cm2). The plants’ biomass production was significantly different (p< 0.05) in the two systems. The biomass production showed lower yield, 458.22 g (± 214.59 g) in the constant flow system that in the flood- and- drain system 692.9 g (± 175.82 g). Fish Growth parameters were better in constant flow system (FCR 5.48 g/g ± 0.19). However, the specific growth rate (SGR) demonstrated that fish grew faster in flood- and- drain system 1.38 %/day (± 0.29).

  • Effect of soil-compost proportion on the abiotic and biotic parameters of soilplant system
    99-104
    Views:
    95

    The environmental awareness, coming to the front in the 21st century, motivates us to supply the plant nutrient demand (in point of the plant, the environment and the human health) with natural materials.
    Composting is known since the beginning of civilization. We came to know more the processes of composting as a result of last decades’ research, but numerous unexplained questions remained up to this day. The good compost is dark gray or brown, and it should not create an odor. It has aggregate structure, and it’s pH is neutral. Compost is soil-like (Fehér, 2001), nutrient-rich material, which contains valuable nutrients extracted from soil, so if we recycle this, we can decrease the chemical fertilizer and other (example: mineral energy) expenses.
    The reason of that we chose the more accurate cognition of compost utilization is to do more effective the site-specific nutrient supply. This increases the average yield and the quality of yield. Besides we can decrease the harmful effects, which endanger the plant, the environment, and the human body.
    During the compost utilization experiment we blended the  acid sandy soil with compost in 4 different volumetric proportions (5 treatments) than we set the pots randomized. The advantage of this method is that we can provide equal conditions for plants so we can measure the effect of  treatments correctly. Our experimental plant was ryegrass (Lolium perenne L.), that grows rapidly, tolerates the glasshouse conditions, and indicates the effect of treatments well. After the harvest of ryegrass we measured the fresh and dry weight of harvested leaves and the total C-, N-, S-content of the dry matter and of the soil, we examined the pH and the salt concentration of  soil as well. 
    Our aim was to study and evaluate the relations between the compost-soil proportion and the nutrient content of soil and plant. In our previous experiments we confirmed (based on variance analyses) that the compost has a beneficial effect on soil and increases the nutrient content of the soil (Szabó, 2009). But it’s important to appoint that the compound of compost is seasonally change: in winter the selective gathered municipal solid waste contains salt that were applied for non-skidding of roads, but salt has a negative effect to the plant. We proved that in our experiment the 25/75% compost/soil proportion was ideal for the plant. This content of compost effected 6 times higher green matter weight compared to the 100% sandy soil. 

  • Challenges and limtations of site specific crop production applications of wheat and maize
    101-104
    Views:
    120

    The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.

  • The effects of water supply on the physiological traits and yield of tomato
    25-30
    Views:
    147

    The SPAD value, the chlorophyll fluorescence and the canopy temperature of the leaves and fruits of tomato hybrid “H1015” were investigated under non-irrigated (I0), deficit irrigated (I50) and well-irrigated (I100) conditions. The aim of the experiments was to show which treatment effect on the examined traits affected photosynthesis, leaf temperature and yield quantity, as well as quality under water scarcity. In the control treatment (I0), the canopy temperature increased, but the SPAD decreased compared to the other two treatments (I50 and I100). Chlorophyll fluorescence produced a fluctuating result. In the end, the number of the fruits was high, but the number of the sick and green berries was increased.

  • Relation of availability and barley uptake of some potentially toxic elements
    7-10
    Views:
    69

    A small-plot microelement load field trial was set up on brown forest clay soil with eight elements (Al, As, Cd, Cr, Cu, Hg, Pb, Zn), on 3 levels each (0/30, 90, 270 kg element ha-1). The soil was treated with soluble salts of elements once at initiation (1994). In the seventh year of the experiment (2001) winter barley was the test plant. The total element content was determined in plant samples (shoot, straw, grain) after microwave digestion using cc.HNO3+cc.H2O2. The element composition of the prepared samples was determined using ICP-MS technique. In the experiment toxic effects of treatments and yield loss could not be observed. Zn and As contents in barely shoots were only moderately increased by increasing microelement loads. Effects of Cr, Cu, Hg, Pb and Al treatments could not be observed. On the other hand, Cd accumulation was significant in the shoot. Cd content was also increased both in straw and grain. Results of this experiment prove that Cd remains mobile in the soil-plant system for a long time. Its accumulation can be observed both in vegetative and reproductive parts of plants without toxic symptoms and yield loss.

  • Effect of plant growth promoting Rhizobacteria (PGPRS) on yield and quality of processing tomato under water deficiency
    19-22
    Views:
    170

    Chlorophyll fluorescence was measured of H1015 tomato hybrid with different bacterial treatments (B0–B1–B2–B3) and three irrigation treatments: regular irrigated (RI), deficit irrigated (DI) and non-irrigated conditions (I0). The aim of the experiments was to show the effects of plant growth promoting rhizobacteria on the yield, dry matter and vitamin C content of processing tomato during different irrigation treatments, and measuring the chlorophyll fluorescence during the ripening and development stages. According to the results, none of the bacterial treatments had a statistical effect on the quantity and quality of the tomato and on the chlorophyll fluorescence, only the irrigation. Further studies are needed.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    74

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • Biomass production estimation of processing tomato using AquaCrop under different irrigation treatments
    131-136
    Views:
    187

    The wiser usage of irrigation water is inevitable in the future. Irrigation has very high input cost; therefore, farmers must carry out irrigation with care. Also, the effect of irrigation on crops has a big role in decision making. Modeling provides a possibility to evaluate this effect. AquaCrop, as a crop production simulation model has great potential in this field. The accuracy of tomato biomass yield prediction of the model was tested in this research. For collecting the necessary data, a field experiment was conducted at Szarvas on processing tomato with different water supplies, such as 100% (I100), 75% (I75), 50% (I50) of potential evapotranspiration and a control with basic water supply (C). The relation of the simulation and actual biomass yields was evaluated during the season. Very good correlation was found between the modelled and the actually harvested data. The data for the control and I100 treatments showed higher correlation than the I75 and I50. The relationship for all of the data was moderately strong. Miscalculations occur mostly when the dry biomass yield reaches
    7 t ha-1. The accuracy of the model was evaluated with the use of mean absolute error (MAE) and root mean squared error (RMSE) values. The least error was found in the C treatment, which means 0.34 MAE and 0.45 t ha-1 RMSE. The simulation resulted in higher errors in the I75 and I50 treatments.

  • The effect of long-term fertilization on the 0.01 M CaCl2 extractable nutrient content of a meadow soil
    73-79
    Views:
    93

    During my research, I studied the 0.01 M CaCl2 extractable NO3--N, NH4+-N, Norg, P and K contents of the soil samples originated from a long term fertilisation trial in the experimental site Hajdúböszörmény. Relationships among the soil nutrient contents, the agronomic nutrient balances of the 2009 year, and fertilization were studied. 
    From the results of the study it was concluded as follows:
    – Fertilization significantly increased the CaCl2 extractable NO3--N, NH4+-N, and K contents of soil.
    – Norg fraction increased as a function of the increasing yield. Hence, it can be assumed that the greater the produced yield, the more the stubble and root residues remain on the arable land. These organic residues can result significant increase in the Norg content of soils.
    – The CaCl2 extractable P and K contents were compared with the calculated P and K limit values. According to these, the experimental soil has a good phosphorus and lower potassium supply capacity. These results are in accordance with the results of the conventional Hungarian fertilization recommendation system.
    – It can be stated that the 0.01 M CaCl2 is able to determine not just inorganic N forms but Norg fraction as well that characterize the easily mineralizable nitrogen reserves. The results proved that AL-P and -K (ammonium lactate acetic acid, traditional Hungarian extractant) are in good agreement with the P and K reserves, but it is important from the aspect of environmental protection and plant nutrition to measure the easily soluble and exchangeable K-, and P-contents of soil. 0.01 M CaCl2 method is recommended for this.