Search

Published After
Published Before

Search Results

  • Yield and sward composition responses of a native grassland to compost application
    35-38
    Views:
    212

    A major part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be realized, the grassland based animal husbandry can be an efficient way of food production. In addition these ecosystems have an important role in carbon sequestration, and with their rich flora – and the fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. The first type of compost was a natural one (N) without any additional material and the other one was enriched in phosphorus (E). Both was produced by the research institute, made of sheep manure. Three rates of compost (10 t ha-1, 20 t ha-1,30 t ha-1) were tested on 3 m×10 m experimental plots. Every treatments had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield and crude protein content was measured in laboratory and with the received data the yield per unit area was calculated. Based on the research results we can say that the application of compost in any dose inflicts higher dry material and crude protein yield. The changes were partly due to some positive changes in sward composition, because of the better nutrient conditions. The research results indicate, that use of organic compost can be an efficient way to increase grass yields in a sustainable way.

  • Role of living bacteria and other amendment in early development of maize
    53-56
    Views:
    126

    Different bacteria and wood ash, as a possible micro-nutrient, and liming material, was examined in our experiment on the early growth of corn seedlings.

    The development of renewing energy resources includes the use of energy grasses and energy forests. The intensive land use in forestry and in agriculture may cause the acidification of soils due to the harvest, or leaching of cations. To maintain the sustainability of soils necessary to maintain it’s the buffer capacity, and pH. Beside the lime the wood ash can is one of the most effective sources to provide the sustainability of intensive land use. The soil born micro organisms play a significant role in the maintenance of soil quality. The bio fertilizer, that contains soil originated bacteria (Azotobacter, and Bacillus sp.), was used in the experiments. The plants release several organic acids by their roots lowering the soil pH, and make more available the sparingly soluble minerals. The amounts of released organic matter depend on stress intensity, as the high pH is. The soil life has a significant role to keep the soil conditions on sustainable level, since there are several similarities in nutrient uptake mechanism between the bacteria and higher plants. Advantageous effects of bio-fertilizer were observed in our experiments.

    We came to the conclusion that the use of wood ash is recommended instead of lime for the improvement of acidic soils, on the evidence of its pH increasing effect. The wood ash contains several micronutrients in an optimum composition for forestry and agricultural plants. The solubility of heavy metals is very low; therefore there is no risk to use the wood ash in the agriculture and in the horticulture by our experiments. The retardation of growth at higher ash doses can be explained by the modification effect to the soil pH, as far as the original soil pH was pH 6.8, and when ash was given to the soil, the pH increases to 7.8 pH, that is unfavourable for the uptake of most nutrients.

  • Water infiltration into the soil – what do measurements indicate?
    343-351
    Views:
    159

    Physical properties of top-soil organic materials significantly influence initiation processes of infiltration and runoff generation. This paper deals with the specifics of water infiltration through the top surface organic layer of the forest soil. Three field methods (Guelph permeameter, Tension disk permeameter, Single-ring method) and one laboratory method (Falling head) of hydraulic conductivity (KS) determination are compared and interpreted in the context of their applicability and limitations. The Falling head method provides far different values of KS if sample cylinders are or are not sealed with grease against the wall effect. The Guelf permeameter is very significant to the position of different horizons’ interface, while Tension disc permeameter results are dependent on antecedent soil moisture. The single ring method is applicable with acceptable results only when there is no abrupt interface between horizons in the vicinity of the ring bottom edge.

  • The effect of crop rotation and fertilization on wheat and maize in the pedoclimatic conditions of the Banat Plain
    14-18
    Views:
    85

    The simplification of the plant cultures range and the yields in the last 10-15 years brings into the actuality the role of crop rotation and
    of fertilization on the yield level and stability for wheat and maize even on the soils with a high natural fertility. The results of the researches
    performed between the years 2006 – 2009 on a cambic low gleyed chernozem from the Banat Plain showed that the wheat cultivated in
    monoculture gives productions with 59-81% lower than that cultivated in crop rotation with other plants during 2-4 years. In maize, the yield
    obtained in monoculture is situated behind that obtained in crop rotation with 11-21%. The most favorable crop rotations for wheat were
    rape-wheat in a 4 years rotation and soybean-wheat in simple rotation of 2 years. In maize, the most favorable was the 2 years rotation
    (wheat-maize). The mineral fertilization was very efficient both in wheat (11-36%) and maize (9-31%). The organic fertilization with manure
    was very efficient for maize, the yields being superior with a mean value by 34% for a 60 t/ha dose and with 16% for 30t/ha. The fertilization
    compensates the negative effect expressed by the monocultivation only in a small measure

  • Findings on the cultivation of potatoes in organic farming
    113-116
    Views:
    101

    This paper explores the effectiveness of organic and plastic mulching for potato production in the Czech Republic. The mulching with chopped grass (GM) and black textile mulch (BTM) were compared to non-mulching control variant (C) with mechanical cultivation. Especially in plots with BTM were first formed ridges and covered by the black polypropylene non-woven textile and then they were planting. During vegetation the infestation of Colorado potato beetle (CPB), weeds biomass, course of soil temperature and soil water potential were assessed. The results showed that surface of GM had a positive effect on soil temperature reduction, soil water potential depression. This study also indicated a positive effect of GM on the larvae of CPB diminution, on the other hand higher incidence of larvae and higher defoliation was observed in BTM. GM had a significant effect on the yield of potatoes. The yield of ware potatoes was higher by 27 % higher on plots with GM and by 16 % lower on plots wit BTM in comparison with C. NeemAzal T/S decreased statistically significantly % of defoliation and increased yield of ware potatoes by 35 % in comparison with control.

  • Comparison of the sample preparation methods worked out for the examination of the element content of wine
    77-82
    Views:
    174

    The examination of the potentially toxic elements content of the wines is not easy task, because the most elements are in little concentration (mg kg-1 or μg kg-1) in the wine and the wines contain great amount of organic matrix. The efficient sample preparation is essential for the accurate determination of element content. The eim of our research was to determine which sample preparation method will be the most efficient in examination of wines with ICP technology. The examined wine sample was a 2008 Chardonnay from the Eger wine region. We did the sample preparation and analysis examination in University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Institute of Food Science, Quality Assurance and Microbiology.
    We did the analysis examinations with ICP- MS (inductively coupled plasma mass spectroscopy). We always did the sample preparations and the examinations in three times rehearsal. The applied sample preparation methods: dilution with distilled water, open digestion and microwave digestion. 
    We were able to measure B, Al, Mn, Fe and Zn with only dilution and open sample preparation. In the smaller quantity present Sr and Ba were measurable in the wine in the case of all three methods well. We were able to measure the Co with dilution and open digestion method,  while Cr, Ni, and Te with only dilution method. In the case of arsenic we were not able to measure reliable result with dilution and open digestion method because of organic matrix and other components
    (alcohols, monosaccharides, polysaccharides, polyalcohols and inorganic salts). On the whole we are able to say that in the case of certain elements (B, Mn, Fe, Zn, Sr, Ba) the open digestion and dilution sample preparation is applicable well, however, in the case of certain elements (As, Al, V, Cr, Se, Mo, Cd, Hg, Pb) we have to develop the methods. It may be development of one of the way, if we develop sample preparation methods to examined element specifically and not
    to wine generally.

  • The efficiency of the different elements of spring barley growing organic technology in the conditions the eastern steppe of Ukraine
    209-213
    Views:
    135

    The effectiveness the use of new nutrient complexes is studied. It is set that a combination of nutrient complexes with organic and organicmineral nutrition background promotes to good growth and development of plants during the growing season, provides the best parameters of crop yield structure and the crop yield and economic efficiency of spring barley cultivation in the condition of the Eastern Steppe of Ukraine.

  • Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
    5-9
    Views:
    111

    Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
    Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
    73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
    The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
    types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
    plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
    availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
    Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
    has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
    Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
    deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
    deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
    which is grown all over the world.
    In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
    fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
    plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
    chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
    It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
    significantly reduced the growth, chlorophyll contents of monocots and dicots alike.

  • Methane emission from Matsuo rice paddy field in light of different fertilizers, costs, profit and carbon credit
    9-13
    Views:
    181

    Nowadays global warming is a major issue to our environment. This issue is generated by the modern human activities like industry and intensive agriculture. This research is about methane emission from rice paddy fields. The aim of the study is to lower the methane emission from the field with the help of using different type of fertilizers, whilst we keep in focus the efficient economic operation. The main experimental field is Matsuo paddy field, (Matsuo town, Sanbu city, Chiba prefecture) which is analyzed by the Chiba University’s soil science laboratory, they provided the data for this study. During the study three type of fertilizer was analyzed which are all organic and the control was a regular chemical fertilizer. For all fertilizers the cost and income of the production were calculated and the profit was weighted with the methane emission what a specific fertilizer produced during the cultivation. In the future if the organic fertilizers are in focus than it is necessary to find a new material what can be competitive with the chemical fertilizers in focus of GHG emission or find an alternative way of the usage of methane in biogas production.

  • Utilization and examination of red, elemental selenium nano spheres, produced by fermentation technology, in animal tests
    245-247
    Views:
    160

    In our experiments we tested the toxicity of Nano-Se and LactoMicroSel® compared with other organic and inorganic selenium forms, in case of a subakut animal test. We produced the Nano-Se and LactoMicroSel® by probiotic lactic acid bacteria in our laboratory. (Prokisch et al., 2010; Eszenyi et al., 2011). We mixed the inorganic selenium forms, selenite and selenate, the organic form, Sel-Plex® and our products, Nano-Se and LactoMicroSel® into the standard food of laboratory mice and we fed them for two consecutive weeks. After the extermination we observed mortality, the change of body mass,and measured the blood antioxidant capacity with FRAP method.

  • Rye plant parameters in the Westsik crop rotation experiment
    39-45
    Views:
    128

    Our research work was carried out in the Westsik crop rotation field experiment in 2018. The main research purpose was to analyse the effect of the different organic and chemical fertilizers on parameters of rye. Our results revealed some differences between the different fertilization methods. One spike weight, grain weight of one spike, rye plant height, rye plant weight per m2 and 1000 seed weight in crop rotations VII, XV and VIII were different from the data of all crop rotations. This finding can be explained by the fact that crop rotations VII and XV were non-fertilized, only 23.3 t ha-1 straw manure (VII) or green lupine manure was applied as a second crop (XV). In addition, crop rotation VIII consists of four parts where we apply chemical fertilization with green lupine manure as a main and second crop. There is a positive close correlation between rye plant height and other studied characters (rye plant weight per m2, spike length, weight of one spike, grain weight per spike, spike weight per m2, grain weight per m2 and 1000 seed weight).

  • Heavy Metals in Agricultural Soils
    85-89
    Views:
    82

    The soil constitutes the basis of the food chain. To keep soil conditions in a good trim is very important, it’s part of the sustainable development and of producing food supply harmless to health.
    In some cases, soil productivity is the only important part, qualitative requirements or economical characteristics can improve it. The soil is threatened by two danger factors: the soil degradation and the soil pollution. The accumulation of different harmful and/or toxic substances in the soil is well known. Heavy metals constitute a part of it. Metals in the soil and in the soil-solution are balanced. This balance depends on the type of the metal, on the pH, on the cation-band capacity of the soil, on the redox relations and the concentration of cations in the soil.
    To be able to handle the metal contamination of the soil, it is important to estimate the form, the possible extension and the concentration of metals.
    Of course, the different types of soils have different physical-chemical, biological and buffer capacity, they can moderate or reinforce the harmful effects of heavy metals. To draw general conclusion of the dispersion and quantitative relations on the metals originated from different contamination sources is hard, because in some emissive sources contamination is limited in small areas but on a high level, some others usually expand on larger areas, and as a result of equal dispersion, the contamination’s level is lower.
    Heavy metals – unlike alkali ions – strongly bond to organic materials, or infiltrate in a kelát form. Their outstanding characteristic is the tendency to create metal-complex forms. Kelats take part in the uptaking and transportation of heavy metals. Heavy metals exert their effects mostly as enzyme-activators.
    The metals cannot degrade in an organic way, they accumulate in living organisms, and they can form toxic compounds through biochemical reactions.
    Lot of the heavy metals accumulate on the boundaries of the abiotic systems (air/soil, water/sediment), when physical or chemical parameters change, and this influences their remobilization.
    Human activity plays a great part in heavy metal mobilization, results in the human origin of most biochemical process of metals.
    To understand the toxic influence of accumulated metals of high concentration, their transportation from soils to plants or their damage in human health, must clearly defined and investigated.
    For effective protection against soil pollution, the types and levels of harmful pollution to soil must identified, regarding legal, technical and soil-science aspects, preferable in a single way. Difficulties in this area mean that toxicity depends on loading, uptake, soil characteristics and living organisms (species, age, condition etc.), furthermore, local and economic conditions considerably differ.

  • The possibilities and limitations of organic fruit production
    41-45
    Views:
    83

    In this review, direct and indirect technological elements of organic production are discussed. Today, there is a growing interest in production prepared without chemicals. We discuss the following issues: site selection, soil, rootstock and cultivar requirements, plant material, planting distances, crown formation, phytotechical operation, irrigation, soil tillage, soil covering and muchning, nutrition supply. Separate section deals with methods of plant protection.

  • Selenium speciation analysis of selenium-enriched food sprouts
    23-28
    Views:
    218

    In this present study, we prepared selenium-enriched pea and wheat sprouts. During our research we aimed not only to measure the total selenium content of the sprouts but to identify different selenium species.

    Scientifical researches show why the analytical examination of different selenium (Se) species is necessary: consumption of all kind of Se-species is useful for a person who suffers in selenium deficit, while there is significant difference between effects of different Se-species on person, in whose body the Se-level is just satisfactory. Biological availability, capitalization, accumulation, toxicity of Se-species are different, but the main difference was manifested in the anti-cancer effect of selenium.

    During our research selenium was used in form of sodium selenite and sodium selenate, the concentration of the solutions used for germination was 10 mg dm-3. Control treatment meant germination in distilled water. Total selenium content of sprout samples was measured after microwave digestion by inductively coupled plasma mass spectrometry (ICP-MS). Different extraction solvents were applied during sample preparation in order to separate different Se-species (0.1 M and 0.2 M HCl or 10 mM citric acid buffer). We wanted the following question to be answered: Which extraction solvent resulted the best extraction efficiency? Selenium speciation analysis of sprout sample extracts was performed by high performance liquid chromatography with anion exchange column, detection of selenium species was performed by ICP-MS.

    Evaluating our experimental results we have been found that significant amount of selenium of inorganic forms used during germination transformed into organic selenium compounds. There was difference between the amount of Se-species in pea and wheat sprouts and selenium uptake and repartition of selenium species were depended on Se-form used during germination. In addition the chromatogram analysis made us clear as well, that the citric acid solvent proved to be the most effective extraction solvent during sample preparation int he view of organic Se species.

  • From Organic to Precision Farming (Contemporary Publication)
    81-86
    Views:
    79

    The paper presents a short review of the different types of farming systems:
    Biofarming, Organic farming, Alternatíve farming, Biodynamic farming, Low input sustainable agriculture (LISA)
    Mid-tech farming, Sustainable agriculture, Soil conservation farming, No till farming, Environmentally sound, Environmentally friendly, Diversity farming
    Crop production system, Integrated pest management (IPM), Integrated farming, High-tech farming
    Site specific production (SSP), Site specific technology (SST), Spatial variable technology, Satellite farming.
    Precision farming
    It concludes that the various systems are applicable in different ratios and combinations depending on the natural and economic conditions.
    The author predicts an increase in precision technologies , the first step being the construction of yield maps compared with soil maps and their agronomic analysis. Based on this information, it will be necessary to elaborate the variable technology within the field, especially for plant density, fertilization and weed control.
    The changes in weed flora during the past fifty years based on 10.000 samples within the same fields using the weed cover method are presented.

  • New challenges in soil management
    91-92
    Views:
    227
    Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
    The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
    − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
    − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
    − Crop production system, integrated pest management, integrated farming, high-tech farming;
    − Site specific production, site-specific technology, spatial variable technology, satellite farming;
    − Precision farming.
    Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
    1) Preserving climate-induced stresses endangering soils.
    2) Turn to use climate mitigation soil tillage and crop production systems.
    3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
    4) Use effectual water conservation tillage.
    5) Use soil condition specific tillage depth and method.
    6) Adapting the water and soil conservation methods in irrigation.
    7) Preserving and improving soil organic matter content by tillage and crop production systems.
    8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
    9) Site-specific adoption of green manure and cover crops.
    10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
  • Evaluation of the role of common vetch (Vicia sativa L.) green manure in crop rotations
    161-171
    Views:
    206

    Common vetch (Vicia sativa L.) is an annual legume, grown as green manure provide rapid soil cover, can increase soil moisture and organic matter content and reduce soil erosion during fall. During the fallow period, legumes grown as catch crops are known by releasing large amounts of mineral nitrogen (N) for the subsequent crop. By taking advantage of these benefits, it is possible to increase the yield of the next crop in an environmentally friendly and sustainable way. The goal of this study was to determine the value of common vetch as a green manure, considering its effect on soil conditions and the yield of next crops. We examined three different common vetch seed rate as a green manure in a crop rotation with triticale, oat and corn. Next to the green manured treatments, we used fertilized and bare fallow control treatment for comparison. In our study we evaluated the aboveground biomass weight of spring vetch green manure and its effect on the moisture content of the soil. We examined the green manure’s effect on the next crops plant height and yield. We found that the moisture content of the green manured plots was significantly higher during summer drought. On the green manured plots, 37.9% higher triticale yield, 50% higher oat yield and 44% higher corn yield were measured compared to the control plots. The insertion of spring vetch green manuring into crop rotations could be a good alternative to sustainable nutrient replenishment methods. It can be used to reduce the input needs of farming, reduce carbon footprint, contribute to the protection of soils and increase the organic matter content of the soil.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    253

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.

  • Long-term effect of soil management on the carbon-dioxide emission of the soil
    515-527
    Views:
    135

    CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the  enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil,  regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the  measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in  higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.

  • Studies of the influences of different N fertilizers and Microbion UNC bacterial fertilizer on the nutrient content of soil
    134-140
    Views:
    107

    A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer on
    nutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate
    (116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomized
    complete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental area
    was chernozem with medium sufficiency level of N and P and poor level of K.
    Our main results:
    The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3
    --N and NH4
    +-N and also the quantity of soluble organic-N were
    almost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3
    --N increased to the greatest
    extent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3
    - -N and total-N contents in the plots
    treated with ammonium-nitrate, the largest NH4
    +-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plots
    treated with urea.
    Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. In
    the case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3
    --N, organic-N and total-N compared to the
    values of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4
    +-N
    content of soil in more cases were higher than that of values with artificial fertilizer treatment.
    As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. Microbion
    UNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizer
    yielded a decrease in these values compared to the control.
    All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterial
    fertilizer increased AL-Mg values in any cases.

  • The effect of crop coverage on the daily dynamism of the soil’s CO2 emission
    97-102
    Views:
    141

    Nowadays one of main goals of international ecosystem research the measurement of greenhouse gases (CO2, N2O and CH4) in different places. The fluctuation of these greenhouse gases – quantity and trend in the case of CO2 and CH4 – could be diverse with atmosphere because it depends on several effects of factors like climate, soil type, vegetation. In grassland out of the three greenhouse gases which fill a part in gas emission, in the case of CO2 soil and vegetation are the most important factors (Soussana et al., 2007).
    In the aspect of global carbon balance grasslands are very important by their large area extension, total carbon content, organic content store (10% of the global carbon storage) (Lemmens et al., 2006). In this summer measurements were carried out to determine CO2 emission of the soil from different soil surfaces like grass covered and bare soil surface during a whole day.

  • Experiment of quality properties of dehydrated fruits
    7-15
    Views:
    119

    The lyophilization is the joint application of freezing and drying. It is an up-to-date conserving procedure, the point of which is that the humidity existing in the frozen humid material is transferred from the solid state directly into the gaseous state at a temperature below 0 oC under vacuum. Out of the procedures applied nowadays, this is the most tolerant drying process.
    With regard to the high investment and operational costs, freeze drying is applied only for valuable, heat-sensitive materials when the technological aim is to preserve such properties as aroma, taste and colour as well as such components as proteins and vitamins. This procedure is suitable for drying and conserving certain foodstuffs, stimulants, organic chemicals, medicines and similar sensitive and valuable materials.
    In our institute, we have been conducting freeze drying experiments with regional fruits and vegetables since the year 2005. During the first phase, we examined the heat- and material transfer as well as the abstraction of humidity, while during the second phase we analysed the rehydration ability and nutrient content of the freeze-dried materials as compared to those dried with the method of convection. Moreover we have conducted penetration measurements with a portable hardness tester.
    To sum up the results gained so far, we can state that the quality of the lyophilized materials is better than those dried in the traditional way. It originates partly in the fact that the temperature and pressure applied for the freeze drying are smaller and the drying period is far longer than for the convection drying.
    In contrast to convection-dried materials, freeze dried materials set in close to their original water-content, keep their original shape and size after being rehydrated. The reason of it the porous, spongy structure (flexible cell wall) of the lyophilized products which is able to take up moisture quickly. In addition, the lyophilized products can be rehydrated faster than those dried in the traditional way.
    Regarding the results of the chemical analyses, the following conclusion can be drawn: the vacuum freeze drying results a small decrease of nutrient content and nutritive value for the lyophilized products.
    The results of the hardness tests support the statement that the majority of agricultural materials cannot be considered as an ideal flexible body, because during the experiment the flexibility coefficient changed when going from the surface of the material inwards. In addition, the penetration tests also confirm that the surface of the convection-dried vegetables is at least 1.5-3 times harder than that of the freeze-dried products. The reason of it that it takes place during the drying denaturation processes.
    The article summarizes the results of our research work listed above, in accordance with our experiments conducted by using the characteristic fruits (apple, plum) of the Nyírség Region.

  • Different soil fertility conditions depending on different land use methods
    169-172
    Views:
    102

    In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones.  This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field  experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
    fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization  variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input.

  • Effects of fermented chicken manure products on the N mineralization rate of the soil using the incubation method
    199-204
    Views:
    199

    In our study, the effect of fermented and specially added poultry manure products (superabsorbent polymer (SAP), bentonite and Aegis as a mycorrhizal inoculum) were investigated in a short soil incubation experiment – at 60% water capacity level - on sandy soil. Soil samples were collected from two layers of the incubation pots after the second and fourth week to check the status of the tested products and the processes in the soil. The pH and the electric conductivity (EC) of the samples were measured using an electrochemical method, while the ammonium and nitrate content of the samples was determined with a photometric method. Soil pH and EC values slightly were decreased during the experiment. Our results pointed out that the increasing dose of SAP caused lower soil pH. The nitrate content of the soil did not change significantly during the experiment. It was found that the increasing SAP content in the products, due to its cross-linked structural property, protected the nitrate ions from leaching. Our results suggest that applied SAP does not bind the nutrient ions so tightly in its structure that it competes with the plant for uptake.

  • Mitigation of the effect of secondary salinization by micro soil conditioning
    115-119
    Views:
    226

    This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.