Search

Published After
Published Before

Search Results

  • The effect of long-term fertilization on the 0.01 M CaCl2 extractable nutrient content of a meadow soil
    73-79
    Views:
    93

    During my research, I studied the 0.01 M CaCl2 extractable NO3--N, NH4+-N, Norg, P and K contents of the soil samples originated from a long term fertilisation trial in the experimental site Hajdúböszörmény. Relationships among the soil nutrient contents, the agronomic nutrient balances of the 2009 year, and fertilization were studied. 
    From the results of the study it was concluded as follows:
    – Fertilization significantly increased the CaCl2 extractable NO3--N, NH4+-N, and K contents of soil.
    – Norg fraction increased as a function of the increasing yield. Hence, it can be assumed that the greater the produced yield, the more the stubble and root residues remain on the arable land. These organic residues can result significant increase in the Norg content of soils.
    – The CaCl2 extractable P and K contents were compared with the calculated P and K limit values. According to these, the experimental soil has a good phosphorus and lower potassium supply capacity. These results are in accordance with the results of the conventional Hungarian fertilization recommendation system.
    – It can be stated that the 0.01 M CaCl2 is able to determine not just inorganic N forms but Norg fraction as well that characterize the easily mineralizable nitrogen reserves. The results proved that AL-P and -K (ammonium lactate acetic acid, traditional Hungarian extractant) are in good agreement with the P and K reserves, but it is important from the aspect of environmental protection and plant nutrition to measure the easily soluble and exchangeable K-, and P-contents of soil. 0.01 M CaCl2 method is recommended for this.

  • Evaluation of reduced tillage technologies in corn production based on soil and crop analyses
    47-54
    Views:
    125

    Despite new cultivation methods, the proportion of conventionally cultivated land is still very high in Hungary.
    Although these technologies demand more time, labour and fuel, they are still attractive to users because they require less professional skill and simple machinery. In Hungary, conventional tillage methods usually lead to soil deterioration, soil compaction and a decrease in organic content. These side effects have caused gradually strengthening economic and environmental problems.
    The technologies for those plants which are dominant on Hungarian arable lands use (winter wheat, maize, sunflower and barley) need to be improved both in the interest of environmental protection and the reduction of cultivation costs.
    The Department of Land Use at Debrecen University is cooperating with KITE Sc. to carry out soil tillage  experiments at two pilot locations to prove tillage technologies already used in the USA.
    The aim of our examination is to adapt new technological developments and machinery, and to improve them on Hungarian soil for local environmental conditions. With these improved machines, the field growing of plants could be executed by less manipulation and better suited to economic and environmental needs. The most significant task is to investigate and improve the conventional cultivation replacing, new soil-protecting tillage technologies, and to apply no-till and mulch tillage systems.
    On the basis of the experiments’ survey data, we established that the looseness and moisture content of the soil using reduced tillage is more favourable than after using conventional technologies. The results of no-till and shallow spring tillage are behind those of winter plough or disk ripper cultivation in corn yield and production elements.
    To preserve moisture content in the soil, the ground clearing and sowing while simultaneously performing no-till method presents the most favourable results. The surplus moisture gained using no-till technology is equal to 40 mm precipitation.
    Regarding the yield of winter wheat we established that the tillage methods do not affect plant yield. Both disk ripper and conventional disc cultivation showed nearly the same harvest results (5.55 or 5.5 t/ha), where the difference is statistically hardly verifiable from the no-till method. From the individual production of corn and the number of plants planted in unit area,  calculated results prove that no significant difference can be detected between the production of winter plough and disk ripper technology. Although the yield achieved with the no-till method is less than with the previously mentioned technologies, the difference is only 9-10%. We received the lowest production at shallow spring tillage.
    Evaluations have shown a 1.1 t/ha (13%) difference in the yield of maize, between winter tillage and the disk ripper method, in this case the traditional method resulted in higher yield. In winter tillage, the yield of maize was 1.9-2.1 t/ha (23-25%) higher than in the case of direct sowing and cultivator treatments. No significant difference could be noted between the yields of direct sowing and cultivator treatments.
    Our research so far has proved the industrial application of reduced tillage methods in crop cultivation technologies.

  • Assessment of energy generated by biogas production in the educational industrial unit of the University of Szeged, Faculty of Agriculture, with special regard to biomass originating from agriculture and the food industry
    137-140
    Views:
    78

    The importance of waste treatment is increasing. Environmental aims are the main driving force. Stricter regulations for landfills lead to the development of alternative treatment methods for waste. For agro-mechanical research, wastes from animal rearing and the food industry, secondary-tertiary biomass, is of deep concern. Available technology is versatile and relatively simple to use as a reliable and effective means of producing a gaseous fuel from various organic waste. The most common application has been the digestion of animal dung, agricultural, and food-industrial waste. This was studied by our department in our pilot farm of our Faculty. The 50-dairy cow, family sized model farm was built in the summer of 1991, as a result of a Dutch – Hungarian cooperation, on the property of the Faculty. The new pig farm, with 30 sows, and the new goat farm, with 100 nannies, was given to the Faculty on 25 April 2001. On the basis of livestock data, the annual dung production and the producible energy were determinate. The energy was calculated by biogas production coefficients in literature.

  • The zooecological remediation of technogen faulted soil in industrial region of Ukraine steppe zone
    111-115
    Views:
    72

    In Ukraine’s Steppe zone the extraction of minerals is important. To eliminate the consequences of coal mining the agricultural recultivation of the disturbed soil is used. Thus toxic compounds for human beings and the majority of plants and soil biota representatives, which can be found mining rock, get into plants and invertebrates by trophy chains. When remediating soil, it is necessary to create tropic conditions in order to provide the life of soil biota. Earthworms (Lumbricidae) are the primary decomposers of the organic material. They are numerous in soil and facilitate the improvement of natural and artificially created soil. This paper studies the possible influence of different variants of substrates, which are used in re-cultivation, the leaf litter from leaves of different wood species, as well as different levels of humidity on the representatives of soil saprophages. Optimal variants of artificial mixed-soil providing the stable existence of animals have been shown, which are recommended for the implementation of rehabilitation measures.

  • Researches regarding the influence of the some technological elements on water use efficiency in maize from Crisurilor Plain
    5-9
    Views:
    135

    Plain and the influence of the hybrid, plant density, crop rotation, nutrient supply, weeds and irrigation on water use efficiency were studied.

    Choosing of the hybrid with the best water use efficiency is very important because a hybrid from 500–600 FAO group (Fundulea 376) in unirrigated conditions and a hybrid from FAO group over 600 (Fundulea 365) obtained the biggest water use efficiency; the hybrid Fundulea 365 obtained the highest irrigation water use efficiency, 20.1 kg yield gain 1 mm-1 irrigation water.

    One of the most known hybrid in the area is Turda super and the highest water use efficiency was obtained using the plant density of 55 000 plants/ha in unirrigated variant and 70 000 plants/ha in irrigated variant. The highest irrigation water use efficiency, 20.7 kg yield gain 1 mm-1, was obtained at 70 000 plants ha-1.

    In maize monoculture was obtained the lowest values of the water use efficiency in unirrigated and irrigated variant: in the wheat-maize crop rotation the values were higher than in maize monoculture and in the wheat-maize-soybean were registered the highest values. The same situation was registered regarding the irrigation water use efficiency.

    Farm manure (30 t ha-1) and especially manure (30 t ha-1) +chemical fertilizers (N90P45) determined a higher values of the water use efficiency in comparison with the control. In the variant with organic + mineral fertilization was registered the higher value (19.4 kg yield gain mm-1) of the irrigation water use efficiency.

    Water use efficiency was much lower in the variant with weeds in comparison with the variant without the weeds; the differences were of 69% in unirrigated variant and of 64% in irrigated variant, very significant statistically. Irrigation water use efficiency from variant with weeds was lower than the value registered in the variant without weeds; the difference (68%) was very significant statistically.

    In average in period 1976–2012, the irrigation determined the increasing in water use efficiency with 22%, 19.4 kg mm-1 vs. 15.8 kg mm-1, but not in all the years caused the irrigation increasing in water use efficiency in comparison with unirrigated maize.

    The results research emphasized the need of the optimization for technology elements studied and a better water use efficiency will be obtained.

  • The effect of genotype and the location of sampling on the mineral content of wool
    157-160
    Views:
    182

    Mineral supplementation is very important in high producing farm animals. The estimation of exact mineral intake is very difficult in forage eating animals, like sheep. Accessing of long term mineral status seems to be possible using wool mineral analysis. However several factors can affect the results. Therefore, the aim of this study was to test the effect of breed and sampling location on the mineral content of sheep wool. 20 Dorper and 20 Tsigai sheep were chosen from the same farm. Samples were obtained from 3 locations (withers, side and quarter) and tested for 8 elements: Ca, Mg, Na, Co, Cu, P, S, Se , Zn. The samples were cleaned with ethyl alcohol from organic contamination, then after adding nitric acid were mineral analized using ultrasonic cleaning unit. The samples were analysed with ICP-OES (Perkin-Elmer, Optima 3300 DV). Statistical analyses were carried out by GLM procedure of SAS statistical analyses software. Differences between means were checked with Tukey-test. Significant breed differences were detected in the case of Mg, Na, S, Se in spite of the same feeding regime. The wool mineral content were within the reference range. The sampling location had no effect on the mineral content of wool.

  • Fertilisation Effect on Quantity of 0.01 M CaCl2 Soluble N-Forms in a Long-Term-Small-Plot Experiment
    166-170
    Views:
    45

    long-term experiments have an opportunity to investigate the effects of fertilization and plant nutrition. The paper reports the results achieved in the 39th years of a long-term-small-plot fertilisation and liming experiment set up on acidic sandy brown forest soil in the Nyírség region. From the 32 treatment, four replications, altogether 128 plot experiments with 10 treatments are summarized. We took samples after harvest of triticale, in August.
    We used a reliable method (segmented continuous flow analysis) to determine different (easily mobilized - 0.01 M CaCl2 soluble) N-forms of soil. The 0.01 M CaCl2 soluble inorganic and total N content and the UV digestable organic-N form of soil were determined by this method.
    The results are summarized below:
    – The mineralized-N (Nmin.) content of soil increased with dose of nitrogen treatment. Liming treatments increase the amount of Nmin.
    – The maximum content of easily mobilize organic-N-fraction was found in the upper (0-20 cm) layer. This fact due to the large amount of crop and roots.
    – Changing of content of 0.01 M CaCl2 soluble total-N-forms due to N doses.
    – The ratios of these N forms are variable. It is very important that the content of organic N fraction is not negligible and this fraction plays a main role in the plant nutrition.

  • Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
    111-116
    Views:
    79

    In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collected four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
    the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
    Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
    − The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
    − The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
    − On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment. 
    − The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition. 
    − Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources. 
    Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
    the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity. 
    Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
    mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility.

     

  • Preliminary test: Evaluation and selection of tomato (Lycopersicon esculentum Mill.) varieties resistant to drought and powdery mildew
    33-37
    Views:
    117

    Powdery mildew (Leveillula taurica) and (Oidium neolycopersici) are two harmful fungi that invade the tomato (Lycopersicon esculentum Mill.) plant and grow in dry conditions. Under the influence of polyethylene glycol 6000 at a concentration of 12%, the total seedlings fresh weight, total seedlings dry weight, seedling growth rate of one seedling, seedling length, and tissue water content percentage for three tomato varieties were assessed. Despite the superiority of the (Mobil) tomato variety in terms of numerical values, the results revealed no significant differences between varieties. As a result, (Mobil) has greater vigor under environmental drought stress of lower osmotic stress than other tomato varieties. More work is required to evaluate the research selection of varieties resistant to biotic stresses in dry areas, such as powdery mildew disease.

  • The effect of apoplastic pH on the nutrient uptake
    65-71
    Views:
    94

    The pH of soil and rhizosphare –around the roots- determine the mobility and solubility of nutrients. The exudates organic acids of plant able to modify the pH, as well as the microorganisms also take part in mobilization of nutrients. The nutrient solve mostly in mildly acidic and neutral pH. The either assumption of utilization of nutrients is the uptake by roots and of course uptake to the cells to take part in metabolism. The pH of apoplast fluid determines the solubility and uptake of nutrients to the cells.
    The aim of this study was to examine the effect of nutrient solution and apoplastic pH together with a bacteria based biofertiliser (Phylazonit MC®) on nutrient uptake and pH of apoplast fluid in case of nutrient solution grown plants in laboratory experiment. According to my results, the bicarbonate increased the pH of nutrient solution in due to influence the solubility and uptake of nutrients. The given bicarbonate to the nutrient solution and infiltrated into the apoplazma also modified the pH of the apoplast fluid of the test plants. The effect of bicarbonate and biofertilizer were different on the pH of the apoplast fluid and nutrient solution in nutrient solution experiment. 

  • Interaction of yield stability and year in major agricultural crops
    41-46
    Views:
    85

    The effect of hydro-meteorological extremities on plant cultivation is the result of the correlation of many factors. These may increase or decrease the effects of hydro-meteorological extremes. The degree of this variance depends on the professionality of treatments, on the quality of the applied technique and technology and also on the soil’s water management characteristics.
    The water management characteristics of Hungary’s arable land are mainly unfavorable or medium. In the past two decades the conditions of originally good soils, from a water management aspect, have significantly deteriorated in the critical 0-60 cm soil layer. This is mainly due to unprofessional land use, a lack of deepening cultivation and neglected organic cultivation. At the same time, hydro-meteorological extremities occur more frequently and the sensibility of plant cultivation has increased.
    The sensibility of plant cultivation is type and location specific, yet, it also effects both the quality and quantity of the result.
    The stability analysis, which covered the period of four decades and incorporated 6-7 agro-ecological areas proves and highlights the following:
    • Winter wheat only reacted to extensive cultivation and unfavorable environmental conditions to a small degree. On the other hand, the effect of hydro-meteorological extremities increases.
    • The stability analysis of maize, which is sensitive to cultivation technology and the location of cultivation, proved just the opposite. Good soil and adequate technology significantly reduces the effect of any particular year.
    • From the years examined, the most favorable proved to be the one with average precipitation. Maize reacted to both extremities in a similar way. Winter wheat reacted to more precipitation with less yield.
    • The yield quality of winter wheat was negatively effected by drought. The negative effect of precipitation is limited to the period of ripening and harvest, so the likelihood of such an effect is not significant.
    • The yield of sunflower – due to pests – significantly reduces in years with high precipitation, while a difference between dry and average years cannot be pinpointed out. The oil content in both dry years and in years with high precipitation is evident, compared to years with average precipitation.
    • The root yield of sugar beet is reduced by drought while the sugar content depends on soil characteristics and climatic extremities. A difference could also be noted by location, whether in Western Hungary and on the Great Plain. Great sugar content can be achieved in years with high precipitation in Western Hungary, while the same result occurred with average precipitation on the Great Plain. Drought did not have a positive effect on sugar content in either location.

  • The effects of the extraction of non-ferrous metals on the ichthiofauna of the Lapus river bassin
    6-8
    Views:
    65

    Over the period 2003-2005 we made ichthyologic research in the basin of the Lapus river. During the sampling we noticed that in some area the water was polluted. In those areas fishweretotallyorpartiallymissing.
    The main pollution sources are those related to nonferrous metal extraction and processing, but there is also pollution from organic substances resulted from the communal residual waters, as well as the “tuica”(alcoholic drink) distilleries.
    Confronting the spots of the pollution sources with the results of the ichthyologic research.we noticed a significantcorrespondencebetween the qualitative and quantitative component of the ichthyofauna and the presence of these sources.
    We could, therefore prove the effect of the process of self-purificationofthewater,aswellastheexistenceofsomespeciesoffishshowing a great degree of tolerance towards pollution.

  • Activity of some enzymes, participating in nitrogen compounds transformation in chernozem, polluted by fluorine compounds
    99-104
    Views:
    87

    Contamination of chernozem by fluorine compounds variously affects those enzymes (urease, asparaginase, glutaminase, arginase, amidase), which takes part in the metabolism of nitrogen-bearing organic compounds. In broken soils the inhibited desaminisations is stronger, than enzymatic hydrolysis of asparagine and arginine. The features of seasonal dynamics of change activity of urease and correlation dependence of its activity from some physical and chemical soils properties are described. These tendencies well comport with the results of model experiments. At minimum HF influence there is inhibition of processes of monohydrocarboxylic acids desaminisation, hydrolytic breaking up of arginine and glutamine. By a side with this there is activating of urea and asparagine breaking up processes on the initial stages of toxicant influence. The study of kinetics of process of urea enzymatic hydrolysis in chernozem at the different level of HF influence showed changes of initial and maximal velocity of enzymatic reaction, and also Michaelis-Menten constant. 

  • The effect of biopreparations in pot experiment
    45-49
    Views:
    129

    In pot experiment the effect of Amykor and Organic Green Gold bioproducts and their combinations with NPK fertilizer on some soil properties (chemical parameters) and on the biomass of testplant were studied. The experiment was set up in 2012 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil typein the pot experiment was humus sandy soil from Debrecen-Pallag with onion (Allium cepa) test plant. At the end of the experiment (after 4 week) in our laboratory the samples of soil and plant were determined. The nitrate-nitrogen, AL-soluble phosphorus and potassium content of soil, the weight of green onion leaves, the wet weight of bulb and root of onion and biomass of onion. The results of the study were the following: – The treatments influenced positively the nitrate-nitrogen, the AL-soluble phosphorus and potassium content of soil. – The most effective treatments were the artificial fertilization (NO3-N) and the NPK+ simple dose of Amykor (AL-P2O5 and Al-K2O). – The NPK fertilization and the NPK+OGG (sprinkle in every 10 days) combinations had significant positive effect on the weight of green onion leaves. – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally. – The OGG treatment (sprinkle in every 10 days) had significant effective impact on the wet weight of bulb and root of onion. – The biomass of onion was increased by the artificial fertilization and OGG (sprinkle in every 10 days) treatment.

  • The effect of different compost rates on the yield of ryegrass (Lolium perenne L.)
    95-98
    Views:
    116

    Protection of natural resources and sustainable natural resources management are essential for the long-term survival of humanity. This makes necessary nowadays the development of environmentally conscious living and spread of that in the future. The amount of organic waste materials, produced during human activities, could be decreased by composting instead of dispose them in landfills. Applying appropriate treatment technology and additives, the compost could be used as fertilizer for horticultural crops and it could increase the easily available nutrient content of soils. Compost utilization prevents nutrient deficiencies and by using the optimal rate, we could reach significant yield increases.

  • CO2 emission of the soil on barley stubble
    95-102
    Views:
    100

    In the last decades the physical and biological status of the soils in Hungary significantly decreased. The degree and intensity of CO2-production of the soil is in close correlation to its structural status and organic matter content. In a complex soil tillage experiment at Karcag in situ measurements have been carried out since 2002 in order to determine the CO2-emission of the soil. Carbon-dioxide emission of the soil in the cases of conventional tillage and reduced cultivation system was analysed in a long-term cultivation experiment. The measurements were carried out after the harvest of the barley, thus root respiration was excluded. For the spatial delimitation of the measuring area a newly developed frame+bowl set was used. Based on measurements, significant differences between cultivation systems can be recognized due to the soil structure changes and its effects

  • Alternatives of sewage sludge use in the crop production
    83-87
    Views:
    105

    The produced plants reduce the greenhouse effect because they fix CO2 that contributes to the causing of the greenhouse effect with about 50%. The production of fertilizers is not only a costly process but it needs a considerable energy at the same time. Nowadays, the reduction of the proportion of the fertilizer is significant. One of the reasons of this is that during the production such by-products are produced in a big quantity in which the necessary vegetal nutrients can be found in a considerable measure these enrich the organic matter of soil. The latter is essential condition for the microorganisms in the soil, without which the sustainable plant cultivation can not be achieved. Besides high prices of artificial fertilizers the utilization of the wastes is economically justified. Finally the other reason for the reduction of a usage of artificial fertilizer is that the wrong use of the fertilizer may cause environmental pollutions. I examined the cultivation application of the sewage sludge in laboratory circumstances during my work.

  • The effect of various composts on vegetable green mass on two soil types
    179-183
    Views:
    136

    Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
    Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.

  • The special questions of nutrition of forest plants
    83-88
    Views:
    52

    Some physiological effects of bacteria containing fertilizer and some wood ash were examined in the experiments. The minimization of the use of chemicals in agriculture has been an ongoing challenge. One option lies in the intenzification of soil life. The release of organic matters by the roots and bacteria play a significant role in the uptake of minerals. The main problem to usilize wood ash in agriculture is its heavy metal contents. The
    solubility of heavy metals is very low, therefore there is no risk to use the wood ash in the agriculture and in the horticulture according to our experiments. The wood ash and biofertilizer contains several micronutrients in an optimum composition for forestry and agricultural plants.

  • The influence of the fertilizing system on the petroleum residues biodegradation on a preluvosoil under control polluted
    251-254
    Views:
    65

    The paper presents the partial results of researches regarding the agrochemical melioration of soils under control polluted by petroleum residues that took place at the Agricultural and Research and Development Station in Oradea, Bihor County.
    The experimental device was made out of 1 m2 microparcels, spread out in subdivided parcels, in four repetitions, having tree factors: A - the pollution by crude oil from Suplacu de Barcău, B – the mineral fertilization, and C – the organic fertilization.
    The experience was set out on a preluvosoil în the year 1993 and the soil was cultivated with millet in the first 3 years and with spring wheat in the last 7 years of research.
    The researches carried out in Oradea had the objective of establishing the effects of the fertilizing system on the petroleum residue biodegradation on a preluvosoil under control polluted with crude oil from Suplacu de Barcău, Bihor County.

  • Bioreactor in the service of sustainable development
    111-118
    Views:
    126

    The control of our relationship with our environment is one of the greatest challenges of the 21st century. This has an effect on the economic and social processes and the human activities. All of these are included in a new developmental strategy: the strategy of sustainable development.
    The strategy of sustainable development prevails by the new technologies and it is realized on high-tech level as the fermentation manipulation of organic materials, biogas production and production of “green” electric current. 
    One of Europe’s largest bioreactors has been established in Nyírbátor in Hungary at first (chief executive: Mihály Petis).

  • Spent mushroom compost (SMC) – retrieved added value product closing loop in agricultural production
    185-202
    Views:
    915

    Worldwide edible mushroom production on agro-industrial residues comprises of more than 11 million tons of fresh mushrooms per year. For 1 kg of mushrooms there is 5 kg of spent mushroom compost (SMC). This enormous amount of waste results in disposal problems. However, SMC is a waste product of the mushroom industry, which contains mycelium and high levels of remnant nutrients such as organic substances (N, P, K). The spent mushroom compost is usually intended for utilization, but there are increasing numbers of experiments focusing on its reuse in agricultural and horticultural production. Recently, the increase of the global environmental consciousness and stringent legislation have focused research towards the application of sustainable and circular processes. Innovative and environmentally friendly systems of utilisation of waste streams have increased interest of the scientific community. Circular economy implies that agricultural waste will be the source for retrieving high value-added compounds. The goal of the present work was to carry out a bibliographic review of the different scenarios, regarding the exploitation of this low cost feedstock with huge potential for valorisation.

  • Saccharomyces cerevisiae growth kinetics study dairy byproduct
    169-172
    Views:
    167

    By guess, annual volume of milk whey is 185–190 million tons and this volume probably will increase next years. Whey has significant biochemical oxygen demand due to its high organic matter content so whey as sewage is one of the most pollutant by-products in the food industry. Apart from environmental pollution, benefit of several whey constituents for human health is another reason to utilize whey. Corn and potato, as well as the processing of milk in the food industry in large quantities of by-products generated by low cost, substantial quantities of starch and lactic acid, which are due to high biological oxygen demand are considered as hazardous waste. Some of them are destroyed sewage storage tanks, and those products are excellent substrates for the growth of microorganisms could be. The traditional nutrient solution optimization methods are solution and time-consuming and are not able to determine the real optimum because of the interaction of factors involved.

  • Harnessing diversity in durum wheat (Triticum turgidum L.) to enhance climate resilience and micronutrient concentration through genetic and agronomic biofortification
    9-20
    Views:
    168

    Huge consumption of wheat-driven food products with low bioavailability and small concentrations of zinc is responsible for zinc-induced malnutrition and associated health complications. The contemporary durum wheat varieties have inherently tiny zinc concentrations in developing grain, which cannot meet the daily human zinc demand. Despite the fact that over two billion people are suffering from iron and zinc-induced malnutrition, various intervention measures have been deployed to reverse the effect of zinc-induced malnutrition on humans. There are evidences that agronomic and genetic biofortification approaches can increase grain yield and nutritional quality (i.e. zinc, iron, protein, and vitamins) of durum wheat to a greater extent. However, there is a lack of direct empirical evidence for which the influence of both biofortification approaches on improving human health. Application of micronutrient-containing fertilizers either in the soil or foliarly is effective in combination with NPK, organic fertilizers coupled with efficient durum wheat varieties, emphasizing the need for integrated soil fertility management (ISFM). Although genetic biofortification is a cost-effective and sustainable approach, agronomic biofortification provides an immediate and effective route to enhancing micronutrient concentrations in durum wheat grain. The application of zinc-containing fertilizers is more effective under drought conditions than in normal growing situations. Hence, this article provides a key information for agronomists and breeders about the potential of biofortification interventions to improve durum wheat yield and enrich the grain qualitative traits to ensure food and nutritional security of the ever-increasing world population.

  • Physiological examination of some industrial wastes under laboratory conditions
    241-246
    Views:
    221

    I would like to draw the attention to the different side-products and wastes that contain lots of organic matter, micro and macro elements, and the fact that they do not have any harmful effect. These materials can be used as micronutrient fertilizers, therefore quantity of the produced CO2 and other greenhouse gases will decrease. Compost, sewage sludge and lime sludge were used in our experiments. The usability of these materials in crop production was examined in crop production within laboratory conditions.