Search

Published After
Published Before

Search Results

  • Soil Biological Activity within Integrated and Ecological Management of Soil
    47-52
    Views:
    145

    The effects of the integrated (IS) and ecological (ES) management of soil on chosen parameters of soil biological activity were investigated in the period 1999-2000. The following characteristics were determined: biomass of microorganisms (Cmic), dehydrogenase activity (DHA), an amount of potentially mineralizable nitrogen (Nbiol), and nitrification intensity. Soil samples were collected from a stationary field experiment established in 1990 on gley brown soil at the Experimental Station of Slovak Agricultural University, Nitra. For each field with a different crop rotations two fertilization treatments were selected: (a) no fertilization and (b) use of manure for silage maize and, within IS, also mineral fertilizers. There was a statistically significant difference at α = 0.05 in the amount of biologically released nitrogen (Nbiol) between both systems and in the nitrification intensity in favour of ES. A higher amount of microbial biomass (Cmic) was noted for ES but without statistical significance. Cultivated crops and the timing of soil sampling were found to have the greatest effect on all the parameters observed in individual experimental years and within the two systems of soil management.

  • The phosphate state and biochemical mobilization of phosphorus compounds in arboreal plants’ soils
    95-98
    Views:
    139

    Some indices of the phosphoric fractions of primery degraded soils, which are formed separate areas of technogenic landscapes, on a spoil-bank of iron-ore mine in the near of Kryvyi Rig, under act of lignosa, which are used for biological recultivation of degraded soils are investigated. Maintenance of mineral phosphates and features of organic phosphorus accumulation are set in soil under arboreal planting. Nutrient supply of plants is enhanced by mobile phosphates and their dynamics during vegetation period. Activity of alkaline and acid phosphatase enzymes are concerned also. On the basis of the soil enzymes activity information it is stated, that under the 35-years-old plantage of Robinia pseudoacacia L. the biochemical mineralization of organic phosphorus compounds passes considerably more actively than under Pinus pallasiana D.Don.

  • Biological potential of plant pathogenic fungi on weeds: A mini-review essay
    59-66
    Views:
    517

    The invasion of weeds into productive areas has substantial negative effects on native ecosystems as well as agricultural production systems globally. Consequently, the task of maintaining or restoring these systems will become increasingly challenging without consistent, ongoing management efforts. The intensifying emergence of herbicide resistance in numerous weed species, coupled with the unintended pollution caused by synthetic herbicides, underscores the growing necessity for alternative, environmentally friendly, and sustainable management techniques, such as the utilisation of bioherbicides. Plant pathogenic microbes play an important role in biologically management of weeds, with the utilization of plant pathogenic fungi emerging as a promising area of study for novel research trends aimed at weed management without reliance of herbicides and to mitigate environmental pollution. A potential solution to decreasing pesticide usage involves the development of bioherbicides containing fungal active ingredients. Among the most commonly utilised fungi in bioherbicides are genera like Alternaria, Colletotrichum, Cercospora, Fusarium, Phomopsis, Phytophthora, Phoma, and Puccinia. Increased weed resistance to herbicides has influenced new strategies for weed management, with some fungi from genera such as Colletotrichum and Phoma already employed for weed control. Nonetheless, it is evident from reviews that further research is imperative in this domain, with particular emphasis on analysing the efficacy of each plant pathogenic fungi.

  • Application of different compost doses in Pinova and Golden Delicious apple orchards
    91-94
    Views:
    230

    Nowadays the success vegetable and fruit production are unimaginable without regular nutrient management. The animal husbandry is getting decrease, thereby there is the lack of organic fertilizer and it is suggested to find alternative nutrient supply methods. One of the ways to supply the required nutrients in an environmentally friendly way is the application of composts, which is less widespread so far, which is appropriate for the requirement of organic farming.

    From the year of 2010 in each year, compost doses were applied in biological apple orchards in cooperation with the Institute of Horticultural Science. In the function of the years different changes were resulted by the compost treatments in the examined parameters in case of both apple species (Golden Delicious and Pinova). It was concluded that the dry matter, ash, total acids, sugar content and the vitamin C changed versus time and species. It is supposed that the effect of compost treatments is getting visible.

    According to the data higher dry matter, total acids and sugar content, (in some cases) ash were measured in case of the apple species Pinova, while the measurements showed higher vitamin C content in case of the species Golden Delicious.

  • The olive (Olea europaea) and the almond (Prunus amygdalus) related phytonutrients, and the associated health-promoting biological effects, a review
    11-24
    Views:
    378

    With the increasing attention to the health promoting activities of the bioactive compounds from some plants, many researchers are focusing on the biological potential and mechanisms of certain cultivated plant species. In this review, we survey the olive and almond based extracts specific phytoconstituents and their associated health promoting effects that have been evaluated in experimental and clinical studies.

     

  • New challenges in soil management
    91-92
    Views:
    315
    Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
    The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
    − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
    − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
    − Crop production system, integrated pest management, integrated farming, high-tech farming;
    − Site specific production, site-specific technology, spatial variable technology, satellite farming;
    − Precision farming.
    Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
    1) Preserving climate-induced stresses endangering soils.
    2) Turn to use climate mitigation soil tillage and crop production systems.
    3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
    4) Use effectual water conservation tillage.
    5) Use soil condition specific tillage depth and method.
    6) Adapting the water and soil conservation methods in irrigation.
    7) Preserving and improving soil organic matter content by tillage and crop production systems.
    8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
    9) Site-specific adoption of green manure and cover crops.
    10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
  • The significance of biological bases in maize production
    61-65
    Views:
    254

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Usability of vegetable extracts in the protection against Alternaria alternata
    113-116
    Views:
    210

    In our country, wormwood ragweed (Ambrosia artemisiifolia) may cause serious problems. Nearly 5 million hectares of agricultural area was infected with ragweed (Ambrosia artemisiifolia), which is believed useless weed. Allergological point of view, most problematic weeds adventive. However, many physiologically very beneficial compound also included, those with the effects have been known also by the Indians. On this basis, herbs can be thought of as ragweed. Our goal was to present that the ragweed contains antifungal active substances as well. In this paper we tested the biological activity of the extracts against Alternaria alternata F.00750 in vitro. We related based on our examination that ragweed contains biologically active agents, by which it is hampered the reproduction of the Alternaria alternata. The minimum effective concentration was 300 mg extract in a Petri dish, which was three days inhibited the growth of fungus. Full fungicidal effect was observed over dose 525 mg.

  • A dual infection of two microscopic fungi on common milkweed (Asclepias syriaca) in Hajdúság region (East-Hungary)
    189-195
    Views:
    287

    Common milkweed (Asclepias syriaca L.) is one of the most noxious and invasive weed species in Hungary. A. syriaca invades arable lands, horticultural and forestry plantations, natural and semi-natural habitats too. In cases of field crops it can cause considerable yield losses mostly in maize (2–10%), soybean (12–32%) and sorghum (4–29%), but only with high rate of coverage. It can also increase these problems that the common milkweed can be serve as reservoir and host for viruses, other pathogens and pests.
    Because of the importance of common milkweed and in spite of demand to develop effective biological control, until now has not been developed a proper control program against A. syriaca. The aim of our research was to identify the necrotrophic fungal pathogens, which were involved in notable disease occurrence on this weed in different parts of Hajdúság region of Eastern-Hungary in 2016.
    To the isolation of fungi from leaves and their identification were based on morphological colony characters on potato dextrose agar (PDA) and Sabouraud dextrose agar (SDA). To the description of conidia features were used PDA for Alternaria and synthetic low-nutrient agar (SNA) for Fusarium species, respectively. The examination of axenic cultures revealed that the fungi isolated from the leaves of common milkweed were Fusarium sporotrichioides and Alternaria alternata.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    195

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Connection of protein and amino acid content of forage and medium quality winter wheat varieties
    101-107
    Views:
    385

    We analysed the crude protein content, amino acid content, amino acid composition of four forage and milling III. quality winter wheat varieties (Magor, Hunor, Róna and Kondor) from their samples from five following years (2003, 2004, 2005, 2006, 2007). We found that quantity of essential and non-essential amino acids rose with increase in crude protein content. On examination of protein amino acid composition in relation to crude protein content we found that the crude protein content increased the quantities of the non-essential amino acids also rose, while those of the essential amino acids decreased as the lysine, the limiting amino acid of wheat. We also established that, as crude protein content increased, the biological value of the protein decreased.

  • Studies of Expression of Peptaibol Synthetase of Trichoderma reesei
    188-190
    Views:
    264

    Because of the potential importance of peptaibols in the biological control of plant diseases, a transgenic, a T. reesei strain carrying a tex1-promoter: goxA fusion plasmid was constructed for furthur studies. The peptaibol synthetase gene (which is highly similar to T. virens tex1) was identified in the genome sequence of T. reesei. A 900 bp 5’ upstream noncoding fragment, presumed to include the promoter region of tex1, was cloned into the pSJ3 plasmid (which contains the Aspergillus niger goxA gene encoding glucose oxidase). Finally, we transformed T. reesei with the tex1-promoter: goxA fusion containing pSJ3 plasmid.

  • Fusarium culmorum isolated from rhizosphere of wooly cupgrass (Eriochloa villosa) in Debrecen (East Hungary)
    93-96
    Views:
    248

    Wooly cupgrass (Eriochloa villosa) is an East-Asian originated weed species and it has been spreaded worldwide by now. The first occurrence of this species in Hungary was observed and published in 2008 nearby Gesztely village (Borsod-Abaúj-Zemplén county, North-East Hungary) than in the summer of 2011 a significant population was discovered next to Debrecen city (Hajdú-Bihar county, East Hungary).

    In 2013 this weed was also reported from Szentborbás village, Somogy county (South-West Hungary). These observations of spreading and its biological features (production of stolons and large number of seeds, moreover herbicide tolerance) indicate that wooly cupgrass (E. villosa) has a great potential of invasiveness, so it may become a hazardous weed not only in Hungary but in all over the world.

    The objective of this study was to identify the fungus which was isolated from wooly cupgrass (E. villosa) root residue samples which were collected after maize harvesting on arable land in late autumn, near Debrecen. The identification of the fungus based on morphological characters of colonies and the features of conidia developed on potato dextrose agar (PDA) plates. After the examination of axenic culture we revealed that the fungus from rhizosphere of wooly cupgrass was Fusarium culmorum. Pathogenicity and/or endophytic relationship between the fungus and wooly cupgrass is still uncertain so pathogenicity tests and reisolations from plants are in progress.

  • Analysis of the photosynthetic parameters, the yield and the quality of winter wheat
    101-106
    Views:
    345

    The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and
    varieties) suitable for the region and the site. The aim of our work is to parametrize the plant assimilation, its intensity, dynamics and the
    most important characteristics and the relationships to the quality in winter wheat trials. The measurements were carried out at the research
    site of the University of Debrecen in small parcel experiments. We measured the leaf net CO2 assimilation rate, stomatal conductance,
    intercellular CO2 level, the transpiration, the leaf temperature and the air temperature by the LICOR LI-6400 portable photosynthesis
    system in field trials on the nutrient supply. The soil of the experimental area is calciferous chernozem with favorable water regime.
    We have examined the photosynthetic activity, the productivity and yield stability of winter wheat varieties. We have compared the yield
    results, at similar agrotechnical conditions in seven cropyears. We also determined the quality parameters of the winter wheat varieties.
    Then we valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the
    connections between assimilation parameters, the yield stability and quality parameters of wheat varieties.

  • Effect of plant extract against opportunist human pathogen soil bacteria
    89-93
    Views:
    194

    Our experiments have repeatedly shown that the extract of ragweed (Ambrosia artemisiifolia) is an antifungal and antibacterial component.
    In our paper we tested of the biological activity of the herbal substance against opportunistic human pathogenic bacteria strains (Staphylococcus
    aureus 110003 and 25923; Staphylococcus saprophyticus 110008). Our laboratory tests show that the extract is bacteriostatic and in several cases bactericid. We can assume that from the the agricultural and public health aspects can be extremely dangerous weed, contains biologically active components and it may be suitable for the prepare of antibacterial agents.

  • The effect of various composts on vegetable green mass on two soil types
    179-183
    Views:
    359

    Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
    Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.

  • Microbiological and Chemical Characterization of Different Composts
    106-111
    Views:
    133

    Composting of agricultural waste is considered particularly important from the point-of-view of environmental protection. Degradation of organic substance results in a significant reduction of waste volume.
    The end product of the composting process, mature compost, can be used as soil coverage against excess loss of wastes, for mulching, for organic manure etc. The problem of composting has come into limelight in environmental studies and in agriculture.
    The quality of the mature compost is determined by physical, chemical and biological parameters of the composting process which, in turn, depend on initial composition of the raw materials, the technology, e.g. regular mixing and moistening and on environmental factors. Quality is the key question in compost use.
    We studied the composting process in compost windrows of different raw material composition. We measured temperature, humidity content, pH, organic substance content, nitrogen and carbon content.
    We counted the number of bacteria, microscopic fungy, ammonifying and cellulose decomposing microorganisms. We directed the composting process with turning weekly (to provide oxygen) and watering (to provide humidity content 40-60%).
    We set up windrows of 1 m3 volume from dry plant substances (cornstalk, pea straw, tomato stalk and crop, weeds) and cow manure not older than 1 week. The cow manure was used at ratios of 0%, 35%, 50%, 65% and 100%, respectively.
    We measured changes in compost temperature relationship with outside temperature until they were almoust the same. Humidity was 40-60% in most cases.
    At the beginning of the process, pH was slightly acidic-neutral; it later becomes neutral-slightly alkaline (pH: 6.93-8.02) as ammonia is liberated from proteins.
    At the end of the process, pH decreased again, due to humification.
    Organic substance content decreased as microorganisms mineralized them. Organic carbon content decreased gradually due to microorganisms used it as an energy.
    Total nitrogen content increased until middle of july and decreased gradually until than.
    The carbon/nitrogen rate were higher in the beginning, it decreased until july-august and increased by smaller degree until end of the process.
    The number of bacteria was higher in the first three weeks and between june-september. The number of cellulose degrading bacteria was the highest in the first three month, the number of ammonifying bacteria was the highest from the end of may until sepember.
    The number of microscopic fungy was significant in the second part of process, after july.

  • Preface
    5
    Views:
    122

    In the frame of a common “Hungarian-Ukrainian Intergovernmental S&T Cooperation Programme” which title is “Change of soils ecological characteristics of Ukraine and Hungary in the conditions of anthropogenic transformed ecosystems and optimization of biological processes of plants primary feeds elements mobilization” a Workshop was held in Debrecen. The member institutes of project participated with different presentation in this program.
    The title of Workshop was: “Anthropogenic effect on the properties of Middle and Eastern European chernozem soils and on the sustainable agricultural production”.
    The aim of the Workshop was to give relevant information about the present situation of the Middle and Eastern European Chernozem soils, especially emphasize the effect of different loading on the quality (properties) of chernozem soils. With the Workshop we would like to create a tradition for discussion about the anthropogenic effect on the soil properties and through it on the productivity of different soils. It was a forum for discussion of research results related to problems and possibilities for prevention of soil quality. With this possibility we would like to contribute to the sustainable agricultural production.
    The papers were read for the publisher and we would like to show them in a separate supplement of Journal of Agricultural Sciences, Acta Agraria Debreceniensis as one of the results of the project.
    The papers comply with the requirements of the scientific issue except those two which show the university and the department of the Ukrainian partner taking part in this project.
    The participant Institutes of the project:
    - Dnepropetrovsk National University, Faculty of Biology and Ecology;
    - Kryvyi Rig Botanical Garden NAS of Ukraine, Plant Physiology & Soil Biology Department;
    - Department of Agrochemistry and Soil Sciences of Centre for Agricultural and Applied Economics;
    - Research Institute of Karcag, Centre for Agricultural and Applied Economics. The collaboration with Ukrainian partners was successful and we have confidence in the further cooperation in scientific research.

  • Selenium speciation analysis of selenium-enriched food sprouts
    23-28
    Views:
    450

    In this present study, we prepared selenium-enriched pea and wheat sprouts. During our research we aimed not only to measure the total selenium content of the sprouts but to identify different selenium species.

    Scientifical researches show why the analytical examination of different selenium (Se) species is necessary: consumption of all kind of Se-species is useful for a person who suffers in selenium deficit, while there is significant difference between effects of different Se-species on person, in whose body the Se-level is just satisfactory. Biological availability, capitalization, accumulation, toxicity of Se-species are different, but the main difference was manifested in the anti-cancer effect of selenium.

    During our research selenium was used in form of sodium selenite and sodium selenate, the concentration of the solutions used for germination was 10 mg dm-3. Control treatment meant germination in distilled water. Total selenium content of sprout samples was measured after microwave digestion by inductively coupled plasma mass spectrometry (ICP-MS). Different extraction solvents were applied during sample preparation in order to separate different Se-species (0.1 M and 0.2 M HCl or 10 mM citric acid buffer). We wanted the following question to be answered: Which extraction solvent resulted the best extraction efficiency? Selenium speciation analysis of sprout sample extracts was performed by high performance liquid chromatography with anion exchange column, detection of selenium species was performed by ICP-MS.

    Evaluating our experimental results we have been found that significant amount of selenium of inorganic forms used during germination transformed into organic selenium compounds. There was difference between the amount of Se-species in pea and wheat sprouts and selenium uptake and repartition of selenium species were depended on Se-form used during germination. In addition the chromatogram analysis made us clear as well, that the citric acid solvent proved to be the most effective extraction solvent during sample preparation int he view of organic Se species.

  • Investigating the above-ground biomass values of sweet potatoes (Ipomoea batatas)
    35-39
    Views:
    330

    The role of sweet potato tubers in human nutrition is not new. The above-ground biomass of sweet potatoes is not used for nutritional purposes in most countries, but it has a high biological value. Therefore, the aim of the present study is to investigate the production of press fibre from above ground biomass by wet fractionation. Two sweet potato varieties (purple- and white-fleshed sweet potato) and two types of irrigation system were used: bubbling water flow system (BWS) and continuous water flow system (CWS). Glucan, xylan, arabinan were analysed by HPLC and elemental content was measured by ICP-OES. Our results show that the total carbohydrate content in the pressed fibre of the leaf blades (27.64–29.88 %w/w) is lower than in the stem with petiole (51.14–57.36 %w/w). No significant difference in glucan, xylan and arabinan content was observed in the leaf blade. In the stem with petiole, significant differences were observed for xylan and arabinan contents. For elemental content, generally higher values were measured in the leaf blade than in the stem with petiole. This information may be relevant for the selection of the appropriate variety and treatment, even for the production of functional food.

  • Comparison of Reproductive Performance of the Roe Deer (Capreolus capreolus, L.) Among Different Regions
    41-46
    Views:
    183

    The potential and actual number of offspring of roe deer and the difference between these figures (prenatal and postnatal loss) significantly vary in each population yearly. The objective of this study is to examine the potential and actual number of offspring, the number of losses, and to find a link between the most important biological characteristics of does (body weight – BW, condition – KFI) and the number of raised offspring on four territories on the Great Hungarian Plain.
    Where the number of corpora lutea (CL) is the highest, there the losses are the highest as well, and the number of raised offspring is the lowest (region I.). Here, the rearing loss is double that of the weakest territory (region IV.). Rearing losses can be associated with the fenotype of does (BW, KFI) but environmental factors also have determinative importance. Where the number of twin-calving does was the highest, I found four times more does without a fawn than where the number of twin-calving does was the lowest. The nursing success was the best (the losses were lowest) in the region where the potential offspring (number of CL) was also the lowest, but the coverage of the habitat and the proportion of forests were largest. The food supply for the animals in autumn and winter are not enough, the structure of the habitat has to be improved as well, so that it might become adequate for game protection in extreme weather conditions.
    The results have to be considered as preliminary ones. It is essential to continue and extend the research to increase the reliability of the results.

  • Development alternatives of rural economy
    187-191
    Views:
    159

    Environmental, natural, social and economic processes undergoing both in Europe and in the world predict such a 21st century that is characterised by increasing resource-crisis from both economic and ecological aspects. Therefore, it is very important for Hungary to see what happens to its natural resources, epecially to its agricultural land, water reserves as well as the biodiversity of the local unique flora and fauna. One of the most significant issues of the rural areas of Hungary is whether we can preserve the natural habitats and the various biodiversity of the related species, the favourable biological background of agriculture. In addition, whether we are able to provide high quality food for the country as well as for the broader reagion, whether we are able to produce energy from the resources available as well as to provide sufficient opportunities for the population to  live and work. These can be considered as the most significant issuesof the coming decades which determine the strategy of the Hungarian rural economies in long term.

  • Saccharomyces cerevisiae growth kinetics study dairy byproduct
    169-172
    Views:
    443

    By guess, annual volume of milk whey is 185–190 million tons and this volume probably will increase next years. Whey has significant biochemical oxygen demand due to its high organic matter content so whey as sewage is one of the most pollutant by-products in the food industry. Apart from environmental pollution, benefit of several whey constituents for human health is another reason to utilize whey. Corn and potato, as well as the processing of milk in the food industry in large quantities of by-products generated by low cost, substantial quantities of starch and lactic acid, which are due to high biological oxygen demand are considered as hazardous waste. Some of them are destroyed sewage storage tanks, and those products are excellent substrates for the growth of microorganisms could be. The traditional nutrient solution optimization methods are solution and time-consuming and are not able to determine the real optimum because of the interaction of factors involved.

  • Introduction of DNA-based Methods to Agriculture Through Molecular Taxonomic Examination of Poa Species
    139-142
    Views:
    284

    biological methods, one among them is AFLP that is well applicable for taxonomic research. Bluegrass species, that are important components of meadow associations, thus their thorough knowledge is necessary in maintaining biodiversity, were examined with bringing this method to perfection.
    Taxonomic relationship of the members of Poa pratensis aggregation is a controversial issue. Present study aimes to identify the members of this group, with a developed AFLP method through molecular taxonomic examination of Poa species in meadows nearby Debrecen, revealing their genetical distances. Species of the aggregation show a great genetic variability, but their genetic proximity approves the use of the term aggregation. Results established wider geographical investigation of three species of the aggregation. The distinctness of the species based on their morphological features was confirmed according to their genetical basis as well. The method overall turned out to be appropriate for the taxonomic research of bluegrass species like Poa pratensis and its aggregation.

  • Methods for detention of lipid rancidity
    117-120
    Views:
    826

    There are various methods available for measurement of lipid oxidation in foods.Changes in chemical, physical, or organoleptic properties of fats and oils during oxidation may be monitored to assess the extent of lipid oxidation. However, there is no uniform and standard method for detecting all oxidative changes in all food systems. The available methods to monitor lipid oxidation in foods and biological systems may be divided into two groups. The first group measures primary oxidative changes and the second determines secondary changes that occur in each system.