Search

Published After
Published Before

Search Results

  • Methodological questions of digital teaching material development made in the subject of mathematics
    25-41
    Views:
    37
    In the methodology of mathematics teaching, the selection and the manner of using applicable digital teaching materials appeared as a new element. As the number of digital teaching materials applicable in education is constantly increasing, their purposeful use is rarely discussed. In what areas digital teaching materials can be used in mathematics? What are the problems for which they could provide a solution? Shall we use them besides traditional solutions, or instead?
    The authors of this article have had the opportunity to participate in projects aiming to develop digital learning materials on various occasions. During the implementation of the projects, they needed to make methodological compromises at various points.
    In our article, we are seeking a more emphatic use of methodology belonging to digital teaching materials, drawing on the experiences of three implemented projects. Our aim is to draw the attention to the anomalies we found in the implementation of the projects, which must be taken into consideration in new developments already at the planning stage.
  • Capturing how students' abilities and teaching experiences affect teachers' beliefs about mathematics teaching and learning
    195-212
    Views:
    125

    We developed an instrument to investigate the effect of students' abilities and teaching experiences on teachers' beliefs about teaching and learning of mathematics. In this pilot study, we used the instrument to measure the beliefs of 43 Indonesian math teachers and five additional teachers. Then, for further investigation, we interviewed those five additional teachers. Results from the 43 teachers' responses to the instrument show that in contrast to teachers with less than five years of teaching, teachers with more than five years elicit significantly different beliefs about mathematics teaching and learning in different contexts related to students' abilities. Teachers' reports in the further investigation indicate that teaching experiences with high and low ability students in teaching mathematics could be a possible explanation of this contrast.

    Subject Classification: C20

  • Lehre der Trigonometrie anhand realistischer Aufgaben im Online-Unterricht
    87-105
    Views:
    108

    The aim of our study was to explore the effects of the active use of realistic exercises in the field of trigonometry. We taught a group of 14 pupils, who were in grade 11. The most of them told us they did not plan mathematics-related studies in the future. We included realistic exercises into our teaching plan, which covered the fields of scalar product, as well as the sine and cosine theorems. Our teaching experiment was done within the framework of online teaching. Effects on the motivation, performance and results of the students were taken into consideration. We also attempted to examine the effects of online teaching on motivation and whether the use of realistic exercises is worthwhile in an online classroom environment. Performance of the students showed a tendency of improvement when they were dealing with the material through realistic exercises even despite the teaching happened online.

    Subject Classification: 97C70, 97D40, 97G60

  • Efficient language teaching software in a multimedia context
    361-374
    Views:
    34
    In this article I deal with the efficiency of multimedia teaching programs, analyzing possibilities for their improvement in the field of language teaching. This research has been carried out with the use of the latest technologies, language teaching software, internet based language teaching applications, digital dictionaries, online content, and the latest results from the field of computational linguistics. The goal of my research is to create a general model that serves and supports various kinds of approaches to improving efficiency; I cannot attempt to present a complete, detailed analytical review due to the complexity and size of this topic. However, my opinion is that by considering and understanding the theoretical aspects of the subject, and supported by certain important ideas, we will be able to achieve remarkable improvements in the field of learning efficiency and knowledge retention in the language teaching and learning process that might lead to outstanding results.
  • Report on the Conference of History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics: Research in History of Mathematics & Teaching of Mathematics : University of Miskolc, 18–21 May, 2006, Miskolc, Hungary
    437-449
    Views:
    35
    The 4th Conference on History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics was organized at the University of Miskolc (Hungary). The aim of the conference was to present aspects of the History of Mathematics and Ethno-mathematics, including its impact on the Teaching of Mathematics.
    Its motto was: Mathematics – a common language for Europe for thousand years.
    There were 21 presentations, a poster lecture (J. Kolumbán, University of Cluj, Romania) and an exhibition made by students of Eötvös University, Budapest (R. Tanács, K. Varga).
    After a short historical introduction we present 19 abstracts and the poster lecture.
  • Report on the Conference of History of Mathematics and Teaching of Mathematics: research in History of Mathematics and Teaching of Mathematics : University of Szeged 19-23 May, 2010, Szeged, Hungary
    319-338
    Views:
    35
    The 6th Conference on the History of Mathematics and Teaching of Mathematics was held in Szeged (Hungary). Its motto reads as:
    Mathematics – a common language for Europe for thousand years.
    The aim of the conference was to present aspects of History of Mathematics, including its impact on Teaching of Mathematics, to provide a forum to meet each other, and to give an opportunity for young researchers to present their results in these fields. University colleagues, students, graduate students and other researchers were invited. The programme of the Conference included talks and posters. The abstracts of the lectures and the posters are presented in this report. There were 24 presentations and poster lectures.
  • New style in teaching word processing
    417-426
    Views:
    31
    Teaching word processing is confined to looking through some menus and showing some functions of a word processor program, although technology presents just a small part of forming layouts. This fact causes that people who are writing documents spend a lot of time by trying to form, e.g., title pages or inner pages.
    The present paper deals with a design of an online course on word processing that fits better the needs of many users. The online course is designed for teaching (LA)TEX by leading the students to the technical issues of the typesetting system through layout and grammar rules: demonstrates the most important basic recommendations of typography and grammar rules through samples, and shows how to program the currently displayed layout in the (LA)TEX programming languages. This methodology suits better the common working habit, and can be a useful help in word processing documents.
  • Teaching XML
    317-335
    Views:
    31
    The author has been teaching XML at the Faculty of Informatics, University of Debrecen since the end of the nineties. This paper gives an overview of XML technology from an educators viewpoint that is based on the experience that the author has gained teaching XML over the years. A detailed description of the XML course is provided. Methodological issues are also discussed.
  • Taking learning styles into consideration in e-learning based education
    385-396
    Views:
    38
    In improving electronic teaching material processes we should take the student's learning styles or methods into consideration. The ways learners receive information may be shared into three categories (modalities): visual, auditory, kinesthetic (tactile). In this paper I present some pedagogical questions of the electronic teaching-learning environment, offer a brief survey of the different learning style theories and emphasise the importance of the modalities in encoding information. The electronic teaching material should encourage the learner to choose an appropriate form of syllabus by which his knowledge can become more efficient.
  • Teaching of problem-solving strategies in mathematics in secondary schools
    139-164
    Views:
    8
    In the Hungarian mathematics education there is no explicit teaching of problem-solving strategies. The best students can abstract the strategies from the solutions of concrete problems, but for the average students it is not enough. In our article we report about a developmental research. The topic of the research was the explicit teaching of two basic strategies (forward method, backward method). Based on our experiences we state that it is possible to increase the effectivity of students' problemsolving achievement by teaching the problem-solving strategies explicitly.
  • The use of different representations in teaching algebra, 9 th grade (14-15 years old)
    29-42
    Views:
    32
    Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
    In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability.
  • Teaching geometry using computer visualizations
    259-277
    Views:
    20
    In this work we study the development of students' creativity using computer-aided-teaching during IT classroom. Teaching geometry in Bolyai Grammar School specialized natural science classes is not an easy task. Here is introduced a new didactic means of teaching geometry which nevertheless requires the same effort to understand the material, but uses a different more active method to familiarize students with the topics. Traditional methods, and the use of compasses and rulers are not omitted either, as they develop the students' motor skills.
  • Experiences using CAS and multimedia int teaching vectorcalculus
    363-382
    Views:
    31
    The development of informatics brings new opportunities that need reevaluating of the teaching concepts. For this reason we have performed a comprehensive educational development for engineering students. Our main goals were to work out a new educational strategy, to develop the needed package of the subject material, to introduce the strategy in the practice, to analyze and evaluate the experiences. In the developed and adapted teaching-learning strategy the teacher is the organizer, designer and the manager of the process. In this paper we summarize the concepts, the results and experiences of the 3-years-long development.
  • Teaching graph algorithms with Visage
    35-50
    Views:
    27
    Combinatorial optimization is a substantial pool for teaching authentic mathematics. Studying topics in combinatorial optimization practice different mathematical skills, and because of this have been integrated into the new Berlin curriculum for secondary schools. In addition, teachers are encouraged to use adequate teaching software. The presented software package "Visage" is a visualization tool for graph algorithms. Using the intuitive user interface of an interactive geometry system (Cinderella), graphs and networks can be drawn very easily and different textbook algorithms can be visualized on the graphs. An authoring tool for interactive worksheets and the usage of the build-in programming interface offer new ways for teaching graphs and algorithms in a classroom.
  • The development of geometrical concepts in lower primary mathematics teaching: the square and the rectangle
    153-171
    Views:
    41
    Our research question is how lower primary geometry teaching in Hungary, particularly the concept of squares and rectangles is related to the levels formulated by van Hiele. Moreover to what extent are the concrete activities carried out at these levels effective in evolving the concepts of squares and rectangles.
    In the lower primary geometry teaching (classes 1-4) the first two stages of the van Hiele levels can be put into practice. By the completion of lower primary classes level 3 cannot be reached. Although in this age the classes of concepts (rectangles, squares) are evolved, but there is not particular relationship between them. The relation of involvement is not really perceived by the children.
  • The application of modelling tasks in the classroom – why and how? with reflections on an EU teacher training course
    231-244
    Views:
    34
    The aim of the article is to present the concept of mathematical modelling in the classroom. LEMA (Learning and Education in and through Modelling and Applications) was an EU Comenius funded project in which mathematics educators from six countries worked to produce materials to support teachers' professional development. A group of voluntary Hungarian mathematics teachers were taught modelling for a year and we were and still are given feedback continously. The article leads us from the general concept of mathematical modelling to its practice in the classroom. It presents difficulties that teachers have to face when doing modelling lessons and their students' reactions are also mentioned. We present sample tasks from the material of the teacher training course as well as tasks that were created by the participants.
  • Teaching student teachers: various components of a complex task
    55-72
    Views:
    26
    In this paper we summarize various aspects of teacher training and teaching student teachers (mainly concerning teachers of upper secondary school and High school). We stress several hints and recommendations to better achieve the obviously important aim: they should learn doing, understanding and teaching mathematics!
    Of course, our view is particularly influenced by European traditions, but we think most of them equally apply to teacher training and teaching student teachers elsewhere. Neither is the paper meant to give an all sided overview about the problem field of teacher education as a whole, nor does it contain provocative, completely new ideas. We just want to describe our view of some aspects, based primarily on our personal experience in the mentioned field.
  • Teaching polygons in the secondary school: a four country comparative study
    29-65
    Views:
    38
    This study presents the analysis of four sequences of videotaped lessons on polygons in lower secondary schools (grades 7 and 8) taught by four different teachers in four different countries (Belgium, Flanders, England, Hungary and Spain). Our study is a part of the METE project (Mathematics Educational Traditions in Europe). The aims and methodology of the project are described briefly in the introduction. In the next section of this paper we describe various perspectives on teaching and learning polygons which were derived from the literature, concerning the objectives, conceptual aspects and didactic tools of the topic. The next two sections introduce the main outcomes of our study, a quantitative analysis of the collected data and a qualitative description linked to the perspectives on teaching polygons. We conclude by discussing some principal ideas related to the theoretical and educational significance of this research work.
  • Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
    251-291
    Views:
    7
    The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
    Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden.
  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    31
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.
  • Teaching centroids in theory and in practice
    67-88
    Views:
    36
    The main aim of this paper is to present an inquiry-based professional development activity about the teaching of centroids and to highlight some common misconceptions related to centroids. The second aim is to emphasize a major hindering factor in planning inquiry based teaching/learning activities connected with abstract mathematical notions. Our basic problem was to determine the centroid of simple systems such as: systems of collinear points, arbitrary system of points, polygons, polygonal shapes. The only inconvenience was that we needed practical activities where students could validate their findings and calculations with simple tools. At this point we faced the following situation: we have an abstract definition for the centroid of a finite system of points, while in practice we don't even have such systems. The same is valid for geometric objects like triangles, polygons. In practice we have triangular objects, polygonal shapes (domains) and not triangles, polygons. Thus in practice for validating the centroid of a system formed by 4,5,... points we also need the centroid of a polygonal shape, formed by an infinite number of points. We could use, of course, basic definitions, but our intention was to organize inquiry based learning activities, where students can understand fundamental concepts and properties before defining them.
  • A differentiated e-learning teaching program in mathematics
    299-308
    Views:
    39
    The intelligent online interactions between students and teacher are still not assured because of the fact that a learning management system could not play the role of a teacher in producing a chain of deduction. Furthermore, managing a course in existing e-learning systems has not yet guaranteed the differentiated teaching because it does not enable students to appropriately learn at their corresponding levels. In this paper, we would like to introduce a differentiated e-learning course in Vietnam. We also present some designing principles for such courses and propose some typical situations in teaching mathematics aimed at helping high school students individualize their online learning in mathematics.
  • Comparative survey on pupils' beliefs of mathematics teaching in Finland and Ukraine
    13-33
    Views:
    15
    The focus of this comparative survey was the following research question: What are the differences and similarities in pupils' beliefs in mathematics between Finland and Ukraine? Data were gathered with the help of a questionnaire. The questionnaire consists of 32 structured statements about mathematics teaching for which the pupils were asked to rate their beliefs on a 5-step scale. The Finnish sample comprised 255 pupils, and the Ukrainian sample 200 pupils. Our data has been gathered with a non-probabilistic convenience sampling.
    The main results of our survey are, as follows: Generally, pupils' beliefs of mathematics teaching and learning in Finland and Ukraine are rather far from similar. An investigation of the differences between pupils' answers across the two countries also showed beliefs that are characteristic for each country. For pupils in Finland, the characteristic beliefs seem to be, as follows: the value of strict discipline, working in small groups, and the idea that all understand. For pupils in Ukraine, the most characteristic might be the following beliefs: the use of learning games, the emphases of mathematical concepts, and teachers' explanations.
  • The formation of area concept with the help of manipulative activities
    121-139
    Views:
    33
    Examining the performance of Hungarian students of Grades 4-12 in connection with area measurement, we found many deficiencies and thinking failures. In the light of this background, it seems reasonable to review the educational practice and to identify those teaching movements that trigger the explored problems and to design a teaching experiment that tries to avoid and exclude them. Based on result we make recommendations for the broad teaching practice. In our study we report on one part of a multi-stage teaching experiment in which we dealt with the comparison of the areas of figures, the decomposition of figures and the special role of the rectangle in the process of area concept formation. The conclusion of the post-test is that manipulative activities are important and necessary in Grades 5 and 6, more types of equidecomposition activities are needed and the number of measuring tasks with grid as a tool should also be increased.
  • The Project Method and investigation in school mathematics
    241-255
    Views:
    39
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.