Search

Published After
Published Before

Search Results

  • Building a virtual framework to exploit multidisciplinary project workshops – peaks & pits
    147-164
    Views:
    14
    Multidisciplinary project work in connection to industry is highly favoured at University education, since it prepares students to envision their spectrum of profession, to be able to participate in production projects in co-operation with partners out of campus, and learn to communicate between disciplines. An effctive combination presumes selection of right partners, set-up of proper virtual platform to bridge time, space, and diffrences in working styles. The set-up process requires several phases of design-based research proofing the melding process to produce a productive workshop that is sustainable. The paper describes the review of literature, the platform and set-up established, a first phase in bridging Art and Computer Science through the description of MOMELTE project, a critical evaluation in order to learn from mistakes, and a new list of design principles to improve the next phase of the workshop process.
  • Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
    123-132
    Views:
    89

    In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.

    Subject Classification: 97D50, 97G40

  • What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
    39-50
    Views:
    82

    Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.

    Subject Classification: 97-01, 97-03, 97D50

  • Summe einer unendlichen geometrischen Reihe im Mathematikunterricht
    229-240
    Views:
    23
    This article deals with sums of infinite geometric series. We focus on the understanding of the notion by pupils at secondary school through generic and universal models. In the first part we survey this notion in the Czech and Slovak curriculum. We describe the process of gaining knowledge as a sequence of five stages. In the second part we show one possible approach how to introduce the notion "sum of the infinite geometric series" through this process. We illustrate this on some examples for pupils. At the end we formulate some pedagogical recommendation for teachers.
  • "On the way" to the function concept - experiences of a teaching experiment
    17-39
    Views:
    80

    Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?

    Subject Classification: D43, U73

  • Designing a 'modern' abacus for early childhood mathematics
    187-199
    Views:
    29
    In this paper, the design of a multi-material, the 'modern' abacus ('modabacus'), for developing early childhood mathematics, is proposed. Presenting the main theories for the design of educational materials as well as similar materials and their educational use, it appears that a new material is needed. The 'modabacus' would be an apparatus which could serve as a multi-material for acting out mathematical tasks as well as a material that could hopefully overcome the limits and restrictions of traditional abacuses and counting boards.
  • The background of students' performance
    295-305
    Views:
    35
    The question to which we were seeking was: how can we reveal the students' strategies and mental process by following their work precisely and by finding out what correlation these have with their efficiency. Our aim was to understand the factors behind of students' achievement. We tried to follow up the process of problem solving by looking at the number of wrong turnings.
  • The shift of contents in prototypical tasks used in education reforms
    203-219
    Views:
    93

    The paper discusses the shift of contents in prototypical tasks provoked by the current educational reform in Austria. The paper starts with the educational backboard of the process of changes in particular with the out tting of the students' abilities in different taxonomies and its implementation in the competence models of Mathematics. A methodological didactical point of view on the process is given additionally. Examples out of a specific collection of math problems which arise from the educational reform are integrated and analysed in the context of educational principles and methods. The discussion ends with a short evaluation of the role of traditional approaches to tasks in the ongoing reform. A bundle of tasks as proof that they are still alive is presented finally.

    Subject Classification: 97B50, 97D40, 97D50

  • Using the computer to visualise graph-oriented problems
    15-32
    Views:
    31
    The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
    This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
    While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
    A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
    Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
    This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant.
  • The investigation of students' skills in the process of function concept creation
    249-266
    Views:
    23
    Function is a basic concept of mathematics, in particular, mathematical analysis. After an analysis of the function concept development process, I propose a model of rule following and rule recognition skills development that combines features of the van Hiele levels and the levels of language about function [11]. Using this model I investigate students' rule following and rule recognition skills from the viewpoint of the preparation for the function concept of sixth grade students (12-13 years old) in the Ukrainian and Hungarian education system.
  • Transition from arithmetic to algebra in primary school education
    225-248
    Views:
    35
    The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed.
  • Experiences using CAS and multimedia int teaching vectorcalculus
    363-382
    Views:
    31
    The development of informatics brings new opportunities that need reevaluating of the teaching concepts. For this reason we have performed a comprehensive educational development for engineering students. Our main goals were to work out a new educational strategy, to develop the needed package of the subject material, to introduce the strategy in the practice, to analyze and evaluate the experiences. In the developed and adapted teaching-learning strategy the teacher is the organizer, designer and the manager of the process. In this paper we summarize the concepts, the results and experiences of the 3-years-long development.
  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    44
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Live & Learn: When a wrong program works
    195-208
    Views:
    26
    In this paper an interesting and surprising case study of my programming education practice is presented. This case underlines the importance of methods, standards and rules of thumb of the programming process. These elements of the programming technology can be taught well in education and they can guarantee the quality of the implemented programs. However the case described in this paper brings an anomaly when a programming standard is violated during the programming process and, although it should imply that the implemented program code works badly, the program works perfectly. This anomaly is caused by a typical implementation problem: the boundary and rules of the machine representation of numbers. This anomaly is going to be analyzed and the appropriate conclusions of our case study will be deducted.
  • Synthesis of concurrent programs
    301-317
    Views:
    33
    Students need a well defined method to be successful in the complex process of writing a concurrent program. In this paper we show a step by step method to create such programs. The method based on UML which has been thought to students during previous courses. UML provides standard and relatively simple tools to describe concurrent systems, and from the description the program can be derived.
    First we give a brief introduction to the concurrent systems. This is followed by the description of the method, and finally we demonstrate the method on a small problem.
  • Veranschaulichung der Lehrstoffstruktur durch Galois-Graphen
    217-229
    Views:
    41
    In this article we compare the process diagram with the Galois-graph, the two hierarchical descriptions of the curriculum's construction from the point of didactics. We present the concrete example through the structure of convex quadrangles. As a result of the analysis it is proved that the process diagram is suitable for describing the activity of pupils, still the Galois-graph is the adequate model of the net of knowledge. The analysis also points out that in teaching of convex quadrangles the constructions of curriculum based only on property of symmetry and only on metrical property are coherent. Generalizing concept is prosperous if the pupils' existing net of knowledge lives on, at most it is amplified and completed. Teaching of convex quadrangles in Hungarian education adopts this principle.
  • The role of computer in the process of solving of mathematical problems (results of research)
    67-80
    Views:
    36
    We would like to present results of an almost two years investigations about the role computer in the process of solving of mathematical problems. In these investigations took part 35 students of the secondary school (generalists) in the age 17–19 years. Each of these students solved following problem:
    Find all values of the parameter m so that the function
    f(x) = |mx + 1| − |2x − m| is:
    a) bounded,
    b) bounded only from the bottom,
    c) bounded only from above,
    first without a computer and next with a special computer program. We would like to show results of these researches.
  • The formation of area concept with the help of manipulative activities
    121-139
    Views:
    33
    Examining the performance of Hungarian students of Grades 4-12 in connection with area measurement, we found many deficiencies and thinking failures. In the light of this background, it seems reasonable to review the educational practice and to identify those teaching movements that trigger the explored problems and to design a teaching experiment that tries to avoid and exclude them. Based on result we make recommendations for the broad teaching practice. In our study we report on one part of a multi-stage teaching experiment in which we dealt with the comparison of the areas of figures, the decomposition of figures and the special role of the rectangle in the process of area concept formation. The conclusion of the post-test is that manipulative activities are important and necessary in Grades 5 and 6, more types of equidecomposition activities are needed and the number of measuring tasks with grid as a tool should also be increased.
  • Computer cooking vs. problem solving
    35-58
    Views:
    66

    Computer cooking is a task-related phenomenon where students (end-users) must blindly follow a long list of orders without any connection to the content of the problem, if there is any. Despite its low efficacy, this method is widely used and accepted in informatics both in the learning-teaching process and testing. The National Base Curriculum 2020 in Hungary is in complete accordance with the ‘Informatics Reference Framework for Schools’, but the course books hardly use the latest results of computer education research. The present paper provides examples of how the results of computer education research can be integrated into teaching-learning materials and classroom practices and discusses the effectiveness and consequences of the different solutions, where tool-centred approaches are compared to problem-focused solutions.

    Subject Classification: 94-01

  • A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
    133-161
    Views:
    123

    We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.

    Subject Classification: 97B40, 97C70

  • An interactive animation for learning sorting algorithms: How students reduced the number of comparisons in a sorting algorithm by playing a didactic game
    45-62
    Views:
    36
    Learning programming and understanding algorithms is one of the hardest tasks for novice computer science students. One of the basic algorithms they learn during the introductory programming and algorithms courses are the sorting algorithms. Students like learning these and other algorithms by animations and didactic games, however, these animations are not educationally useful in every case. In this article, we present our educational sorting game, which can be used to introduce the topic of sorting algorithms. The didactic game can be used later too, as a demonstrative tool for explaining the more efficient, quicksort algorithm. We conducted a pedagogical experiment, in which we examined the process of development of sorting algorithms by students while they used the mentioned didactic game. The results showed that students were able to create an algorithm to solve the sorting problem, and they improved its effectiveness by reducing the number of comparisons in the algorithm. They were also able to understand the importance of the efficiency of algorithms when we demonstrated them the quicksort algorithm using the same tool after the experiment.
  • Dynamic geometry systems in teaching geometry
    67-80
    Views:
    29
    Computer drawing programs opened up new opportunities in the teaching of geometry: they make it possible to create a multitude of drawings quickly, accurately and with flexibly changing the input data, and thus make the discovery of geometry an easier process. The objective of this paper is to demonstrate the application possibilities of dynamic geometric systems in primary and secondary schools, as well as in distance education. A general characteristic feature of these systems is that they store the steps of the construction, and can also execute those steps after a change is made to the input data. For the demonstration of the applications, we chose the Cinderella program. We had an opportunity to test some parts of the present paper in an eighth grade primary school.
  • A proposed application of Monte Carlo method in teaching probability
    37-42
    Views:
    38
    Pupils' misconception of probability often results from lack of experience. Combining the concept of probability and statistics, the proposed application is intended for the teachers of mathematics at an elementary school. By reformulating the task in the form of an adventure, pupils examine a mathematical problem, which is too difficult for them to solve by combinatorial method. By recommending the simulation of the problem, we have sought to provide pupils with valuable experience of experimenting, recording and evaluating data.
  • Potential, actual and practical variations for teaching functions: cases study in China and France
    157-166
    Views:
    77

    This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.

    Subject Classification: 97-06

  • Heuristic arguments and rigorous proofs in secondary school education
    167-184
    Views:
    31
    In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme.