Search

Published After
Published Before

Search Results

  • The requirements in statistics education – comparison of PISA mathematical tasks and tasks from the mathematical textbooks in the field of statistics
    263-275
    Views:
    34
    This work presents the results of the analysis of both PISA items and Croatian mathematical textbooks in the field of statistics.
    The analysis shows that PISA's released statistics problems have in many ways different mathematical requirements from the requirements of textbook problems in the statistics chapters, with respect to the mathematical activities, complexity and in the forms of questions. The textbook analysis shows that mathematical examples and problems often require operation and interpretation skills on a reproductive or connections level. Statistics textbook problems are given in the closed-answer form. The results also show that while PISA puts strong emphasis on the statistics field, in the current Croatian curriculum this field is barely present. These discrepancies in requirements and portion of statistics activities surely affect the results of Croatian pupils on PISA assessment in the field of mathematical literacy.
  • Mathematical gems of Debrecen old mathematical textbooks from the 16-18th centuries
    73-110
    Views:
    29
    In the Great Library of the Debrecen Reformed College (Hungary) we find a lot of old mathematical textbooks. We present: Arithmetic of Debrecen (1577), Maróthi's Arithmetic (1743), Hatvani's introductio (1757), Karacs's Figurae Geometricae (1788), Segner's Anfangsgründe (1764) and Mayer's Mathematischer Atlas (1745). These old mathematical textbooks let us know facts about real life of the 16-18th centuries, the contemporary level of sciences, learning and teaching methods. They are rich sources of motivation in the teaching of mathematics.
  • Artworks as illustrations in Hungarian high school Mathematics textbooks
    103-117
    Views:
    68

    Three different series of Hungarian Mathematics textbooks used in grade 9-12 education for the past 30 years have been analysed in this research. Our aim is to show and evaluate how the visual arts have been connected to mathematical ideas in these textbooks. We have applied the six dimensions of evaluation, which have recently been introduced in (Diego-Mantec on, Blanco, Búa Ares, & González Sequeiros, 2019) to categorise the illustrations of the three different series. We show examples for each dimension from the textbooks, and we find that even if the number of artistic illustrations in these coursebooks have significantly increased, in most cases these sporadic examples are not closely related to the mathematical context, mainly used for ornamental purposes to decorate the core text. Based on this classification we conclude that the number of artistic illustrations with underlying math concepts making students' participation more active could and should be significantly increased.

    Subject Classification: 97U20

  • Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
    31-49
    Views:
    151

    In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.

    Subject Classification: 97U20, 08A50

  • Number theory vs. Hungarian highschool textbooks: √2 is irrational
    139-152
    Views:
    26
    According to the Hungarian National Curriculum the proof of the irrationality of √2 is considered in grade 10. We analyze the standard proofs from the textbooks and give some mathematical arguments that those reasonings are neither appropriate nor sufficient. We suggest that the proof should involve the fundamental theorem of arithmetic.
  • Task reformulation as a practical tool for formation of electronic digest of tasks
    1-27
    Views:
    34
    Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article.
  • Forming the concept of congruence I.
    181-192
    Views:
    9
    Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
    In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
    I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence.
  • Models of impulsive phenomena: experiences with writing an interactive textbook
    333-345
    Views:
    30
    "Take the textbook to computer" – is said quite often. Would it be so easy? If we start such a work, we meet a lot of trouble very soon. A book stored on a CD, read on the screen of computer and containing some hyperlinks does not become automatically electronic textbook. There are difficulties also in writing merely an electronic attachment to a classical book. In this paper, we deal with some important features (actually important from our point of view) of interactive mathematics textbooks, arising mathematical, didactical and technical problems. The "principles" are illustrated with examples taken from the book-CD "Models of Impulsive Phenomena".
  • Outstanding mathematicians in the 20th century: András Rapcsák (1914-1993)
    99-110
    Views:
    27
    In this paper we commemorate the life and work of András Rapcsák on the occasion of the centenary of his birth. He was an outstanding professor and a scholar teacher. He was head of the Department of Geometry (1958-1973) and the director of the Institute of Mathematics at the University of Debrecen (Hungary). He played an important role in the life of the University of Debrecen. He was the rector of this university between 1966 and 1973.
    At the beginning of his career he taught at secondary schools in several towns. He wrote mathematical schoolbooks with coauthors. He also taught at Teacher's College in Debrecen and in Eger.
    He became to interested in differential geometry under the influence of Ottó Varga. The fields of his research were line-element spaces and related areas. He was elected an Ordinary Member of the Hungarian Academy of Science in 1965. He wrote 21 papers, 8 school and textbooks and 3 articles in didactics of mathematics.
  • Dressed up problems - the danger of picking the inappropriate dress
    77-94
    Views:
    14
    Modelling and dressed-up problems play an inevitably unavoidable role in mathematics education. In this study we would like to point out how dangerous is it to dress up mathematical problems. We go back to the principle of De Lange: The problem designer is not only dressing up the problem, but he is the solution designer, as well. We show three examples selected from Hungarian high school textbooks where the intended solution does not solve the problem, because the dressing changes the context and changes the problem itself.