Search
Search Results
-
"On the way" to the function concept - experiences of a teaching experiment
17-39Views:80Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?
Subject Classification: D43, U73
-
Forming the concept of congruence I.
181-192Views:9Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence. -
The formation of area concept with the help of manipulative activities
121-139Views:33Examining the performance of Hungarian students of Grades 4-12 in connection with area measurement, we found many deficiencies and thinking failures. In the light of this background, it seems reasonable to review the educational practice and to identify those teaching movements that trigger the explored problems and to design a teaching experiment that tries to avoid and exclude them. Based on result we make recommendations for the broad teaching practice. In our study we report on one part of a multi-stage teaching experiment in which we dealt with the comparison of the areas of figures, the decomposition of figures and the special role of the rectangle in the process of area concept formation. The conclusion of the post-test is that manipulative activities are important and necessary in Grades 5 and 6, more types of equidecomposition activities are needed and the number of measuring tasks with grid as a tool should also be increased. -
Forming the concept of congruence II.
1-12Views:31This paper is a continuation of the article Forming the concept of congruence I., where I gave theoretical background to the topic, description of the traditional method of representing the isometries of the plane with its effect on the evolution of congruence concept.
In this paper I describe a new method of representing the isometries of the plane. This method is closer to the abstract idea of 3-dimensional motion. The planar isometries are considered as restrictions of 3-dimensional motions and these are represented with free translocations given by flags.
About the terminology: I use some important concepts connected to teaching of congruence, which have to be distinguished. My goal is to analyse different teaching methods of the 2-dimensional congruencies. I use the term 3-dimensional motion for the orientation preserving (direct) 3-dimensional isometry (which is also called rigid motion or rigid body move). When referring the concrete manipulative representation of the planar congruencies I will use the term translocation. -
Prime building blocks in the mathematics classroom
217-228Views:148This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.
Subject Classification: F60, C30, E40, U60
-
Some problems of solving linear equation with fractions
339-351Views:17The aim of this paper is to offer some possible ways of solving linear equations, using manipulative tools, in which the "−" sign is found in front of an algebraic fraction which has a binomial as a numerator. It is used at 8th grade.