Search

Published After
Published Before

Search Results

  • Teaching probability theory by using a web based assessment system together with computer algebra
    81-95
    Views:
    37
    In the course of Maths Basics 2, the Faculty of Economic Science students of Kaposvár University learn the classical chapters of Probability Theory, namely random variables and the well-known probability distributions. Our teaching experiences show that students' achievement is weaker in case of problems concerning continuous random variables. From school year 2012/13 we have had an opportunity to take Maple TA, the web-based test- and assessment system, into the course of education. It is sufficient for the users of Maple TA to have a browser. Maple computer algebra system, which runs on the server, assesses students' answers in an intelligent way, and compares them with the answers that are considered correct by the teacher. In our presentation we introduce some elements of Maple TA system, the didactic considerations the test sheets were made by, as well as our research results concerning the use of Maple TA.
  • Teaching reliability theory with the Computer Algebra System Maxima
    45-75
    Views:
    39
    The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
    It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education.
  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    52
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Teaching meaningful mathematics with the Computer Algebra System MAXIMA using the example of inequalities
    53-65
    Views:
    34
    The paper was originally motivated by the request to accentuate the meaningful contribution of inequalities in Mathematics Education. Additionally nationwide approved competences such as estimating come to the fore when organizing mathematical contents along some central Big Ideas. Not least the integration of computers enriches the reasonable discussion of inequalities by modern well accepted methodological principles. The freeware MAXIMA is used as Computer Algebra System (CAS) representatively.
  • Decomposition of triangles into isosceles triangles II: complete solution of the problem by using a computer
    275-300
    Views:
    32
    We solve an open decomposition problem in elementary geometry using pure mathematics and a computer programme, utilizing a computer algebra system.
  • Report on "The Computer Algebra and Dynamical Geometry Systems, as the catalysts of the Mathematics education": Conference, 6-7 June, 2003, Pécs, Hungary
    259-269
    Views:
    10
    The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2003 a conference on the role of CAS and DGS in the Mathematics education. We discuss – based on the authors' abstracts – the conference's activities.
  • GeoGebra in mathematics teaching
    101-110
    Views:
    46
    GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools.
  • Report on the First Central- and Eastern European Conference on Computer Algebra- and Dynamic Geometry Systems in Mathematics Education, 20-23 June, 2007, Pécs, Hungary
    409-413
    Views:
    28
    The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2007 a conference on the role of CAS and DGS in the Mathematics education. We discuss the conference's activities.
  • Application of computer algebra systems in automatic assessment of math skills
    395-408
    Views:
    38
    Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied.
  • An e-learning environment for elementary analysis: combining computer algebra, graphics and automated reasoning
    13-34
    Views:
    37
    CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units.
    The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples.
  • Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
    51-68
    Views:
    30
    In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways.
  • Teaching of financial mathematics using Maple
    289-301
    Views:
    62
    The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc.
  • From iteration to one - dimensional discrete dynamical systems using CAS
    271-296
    Views:
    24
    In our paper we present the basic didactical framework and approaches of a course on one-dimensional discrete dynamical systems made with the help of Computer Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First we review some didactical principles of teaching mathematics in general and write about the advantages of the modularization for CAS in referring to the constructivistic view of learning. Then we deal with our own development, a CAS-based collection of programs for teaching Newton's method for the calculation of roots of a real function. Included is the discussion of domains of attraction and chaotic behaviour of the iterations. We summarize our teaching experiences using CAS.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    39
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.