Search

Published After
Published Before

Search Results

  • Notes on the representational possibilities of projective quadrics in four dimensions
    167-177
    Views:
    12
    The paper deals with hyper-quadrics in the real projective 4-space. According to [1] there exist 11 types of hypersurfaces of 2nd order, which can be represented by 'projective normal forms' with respect to a polar simplex as coordinate frame. By interpreting this frame as a Cartesian frame in the (projectively extended) Euclidean 4-space one will receive sort of Euclidean standard types of hyper-quadrics resp., hypersurfaces of 2nd order: the sphere as representative of hyper-ellipsoids, equilateral hyper-hyperboloids, and hyper-cones of revolution. It seems to be worthwhile to visualize the "typical" projective hyper-quadrics by means of descriptive geometry in the (projectively extended) Euclidean 4-space using Maurin's method [4] or the classical (skew) axonometric mapping of that 4-space into an image plane.
  • Visualisation in geometry education as a tool for teaching with better understanding
    337-346
    Views:
    164

    In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.

    Subject Classification: 97U10, 97G10

  • On a special class of generalized conics with infinitely many focal points
    87-99
    Views:
    8
    Let a continuous, piecewise smooth curve in the Euclidean space be given. We are going to investigate the surfaces formed by the vertices of generalized cones with such a curve as the common directrix and the same area. The basic geometric idea in the background is when the curve runs through the sides of a non-void triangle ABC. Then the sum of the areas of some triangles is constant for any point of such a surface. By the help of a growth condition we prove that these are convex compact surfaces in the space provided that the points A, B and C are not collinear. The next step is to introduce the general concept of awnings spanned by a curve. As an important example awnings spanned by a circle will be considered. Estimations for the volume of the convex hull will be also given.
  • The tools for developing a spatial geometric approach
    207-216
    Views:
    74

    Tamás Varga writes about the use of tools: "The rational use of tools - the colored bars, the Dienes set, the logical set, the geoboard, and some other tools - is an element of our experiment that is important for all students, but especially for disadvantaged learners." (Varga T. 1977) The range of tools that can be used well in teaching has grown significantly over the years. This paper compares spatial geometric modeling kits. Tamás Varga uses the possibilities of the Babylon building set available in Hungary in the 1970s, collects space and flat geometry problems for this (Varga T. 1973). Similarly, structured kits with significantly more options have been developed later, e.g. ZomeTool and 4D Frame. These tools are regularly used in the programs of the International Experience Workshop (http://www.elmenymuhely.-hu/?lang=en). Teachers, schools that have become familiar with the versatile possibilities of these sets, use them often in the optional and regular classes. We recorded a lesson on video where secondary students worked with the 4D Frame kit. We make some comments and offer some thoughts on this lesson.

    Subject Classification: 97G40, 97D40

  • Powers which commute or associate as solutions of ODEs
    241-254
    Views:
    14
    This paper is dedicated to the two classical transcendental functions: The locus of points for which powers commute, and the locus of points for which powers associate. These classical functions however are considered in a new perspective: as holomorphic solutions of ODEs passing over the points of singularity of these ODEs.
    Generally, solution functions which are holomorphic at singular points of the phase space of ODEs were studied in [2,3], and it was shown in [3], that certain holomorphic functions may satisfy only singular rational ODEs. This is the frame in which the function of commuting or associating powers are considered in this paper.
    First we obtain several types of ODEs satisfied by these functions. The obtained ODEs happen to have singular points, yet the solutions are proved to be holomorphic at these points, and their Taylor expansions are obtained. However it is not yet known whether these two transcendental functions can satisfy a regular rational ODE at the respective special points. The article also poses an open question about remarkable inequalities related to the commuting powers.
  • Packings in hyperbolic geometry
    209-229
    Views:
    21
    I am becoming older. That's why I am returning to my youth sins. "On revient toujours á ses premiers amoures". This sin was the noneuclidean hyperbolic geometry – especially the Poincaré model. I was teaching this kind of geometry over many years as well in highschool (Gymnasium) as for beginners at the university too.
    A lot of results concerning packings in hyperbolic geometry are proved by the Hungarian school around László Fejes Tóth. In this paper we construct very special packings and investigate the corresponding densities. For better understanding we are working in the Poincaré model. At first we give a packing of the hyperbolic plane with horodisks and calculate the density. In an analogous way then the hyperbolic space is packed by horoballs. In the last case the calculation of the density is a little bit difficult. Finally it turns out that in both cases the maximal density is reached.
  • Development of spatial perception in high school with GeoGebra
    211-230
    Views:
    38
    In everyday life, on numerous occasions we need to project 3D space onto a plane in order to activate our spatial perception. While our ability in this area can be improved, and considering several national and international research results, the development is even necessary on all levels of education. GeoGebra, as a supplement to previously used tools, has proven to be very useful respective to the development. We have many possibilities to display spatial elements in GeoGebra and to apply such kind of worksheets among 15-18 year old students. I show the results of the 2011/2012 school years connected to the development of spatial perception and the results of an input case survey, which also justifies the need for development.
  • Applications of methods of descriptive geometry in solving ordinary geometric problems
    103-115
    Views:
    30
    The importance of descriptive geometry is well-known in two fields. Spatial objects can be mapped bijectively onto a plane and then we can make constructions concerning the spatial objects. The other significance of descriptive geometry is that mathematical visual perception of objects in three-dimensional space can be improved by the aid of it. The topic of this paper is an unusual application of descriptive geometry. We may come across many geometric problems in mathematical competitions, in entrance examinations and in exercise books whose solution is expected in a classical way, however, the solution can be found more easily and many times more general than it is by the standard manner. We demonstrate some of these problems to encourage to use this geometric method. Understanding the solution requires very little knowledge of descriptive geometry, however, finding a solution needs to have some idea of descriptive geometry.
  • Building a virtual framework to exploit multidisciplinary project workshops – peaks & pits
    147-164
    Views:
    14
    Multidisciplinary project work in connection to industry is highly favoured at University education, since it prepares students to envision their spectrum of profession, to be able to participate in production projects in co-operation with partners out of campus, and learn to communicate between disciplines. An effctive combination presumes selection of right partners, set-up of proper virtual platform to bridge time, space, and diffrences in working styles. The set-up process requires several phases of design-based research proofing the melding process to produce a productive workshop that is sustainable. The paper describes the review of literature, the platform and set-up established, a first phase in bridging Art and Computer Science through the description of MOMELTE project, a critical evaluation in order to learn from mistakes, and a new list of design principles to improve the next phase of the workshop process.
  • Psychology - an inherent part of mathematics education
    1-18
    Views:
    146

    On the chronology of individual stations of psychology and their effect on mathematics education designed as working document for use in teacher training.
    The article is structured as a literature survey which covers the numerous movements of psychology towards mathematics education. The current role of psychology in mathematics education documented by different statements and models of mathematics education should provide a basis for the subsequent investigations. A longitudinal analysis pausing at essential marks takes centre of the continuative considerations. The observed space of time in the chapter covers a wide range. It starts with the separation of psychology from philosophy as a self-contained discipline in the middle of the 19th and ends with the beginning of the 21st century. Each stop states the names of the originators and the branches of psychology they founded. These stops are accompanied by short descriptions of each single research objective on the one hand, and their contributions to mathematics education on the other hand. For this purpose, context-relevant publications in mathematics education are integrated and analysed. The evaluation of the influence of concepts of psychology on teaching technology in mathematics is addressed repeatedly and of great importance. The layout of this paper is designed for the use as a template for a unit in teacher-training courses. The conclusion of the article where the author refers to experiences when teaching elements of psychology in mathematics education courses at several universities in Austria is intended for a proof on behalf of the requested use.

    Subject Classification: 01A70, 01-XX, 97-03, 97D80

  • Forming the concept of congruence I.
    181-192
    Views:
    9
    Teaching isometries of the plane plays a major role in the formation of the congruence-concept in the Hungarian curricula.
    In the present paper I investigate the way the isometries of the plane are traditionally introduced in most of the textbooks, especially the influence of the representations on the congruence concept, created in the teaching process.
    I am going to publish a second part on this topic about a non-traditional approach (Forming the concept of congruence II). The main idea is to introduce the isometries of the two dimensional plane with the help of concrete, enactive experiences in the three dimensional space, using transparent paper as a legitimate enactive tool for building the concept of geometric motion. I will show that this is both in strict analogy with the axioms of 3-dimensional motion and at the same time close to the children's intuitive concept of congruence.
  • Examples of analogies and generalizations in synthetic geometry
    19-39
    Views:
    29
    Teaching tools and different methods of generalizations and analogies are often used at different levels of education. Starting with primary grades, the students can be guided through simple aspects of collateral development of their studies. In middle school, high school and especially in entry-level courses in higher education, the extension of logical tools are possible and indicated.
    In this article, the authors present an example of generalization and then of building the analogy in 3-D space for a given synthetic geometric problem in 2-D.
    The idea can be followed, extended and developed further by teachers and students as well.
  • Virtual manipulatives in inquiry-based approach of 3D problems by French 5th graders
    229-240
    Views:
    71

    The aim of this research is to study the appropriation of a 3D environment by learners in an a-didactical situation of problem solving. We try to evaluate the relevance of the virtual 3D environment in the development of students' cognitive and metacognitive abilities. We implanted a problem-solving activity related to a 3D cube situation with an empty part in the cube in different French primary school areas in May 2019. In the experimental group each learner works individually with a PC-computer where the virtual environment ANIPPO is implemented. In the control group the pupils work in a traditional class environment. We present the results of this pre-experimentation.

    Subject Classification: 97D50, 97U60, 97U70

  • Central axonometry in engineer training and engineering practice
    17-28
    Views:
    22
    This paper is concerned with showing a unified approach for teaching central and parallel projections of the space to the plane giving special emphasis to engineer training. The basis for unification is provided by the analogies between central axonometry and parallel axonometry. Since the concept of central axonometry is not widely known in engineering practice it is necessary to introduce it during the education phase. When teaching axonometries dynamic geometry software can also be used in an interactive way. We shall provide a method to demonstrate the basic constructions of various axonometries and use these computer applications to highlight their similarities. Our paper sheds light on the advantages of a unified approach in such areas of engineering practice as making hand drawn plans and using CAD-systems.