Search
Search Results
-
The role of representations constructed by students in learning how to solve the transportation problem
129-148Views:107The purpose of the research presented in this paper was to study the role of concrete and table representations created by students in learning how to solve an optimization problem called the transportation problem. This topic was learned in collaborative groups using table representations suggested by teachers in 2021. In 2022, the researchers decided to enrich the students’ learning environment with concrete objects and urged the students to use them to present the problem to be solved. The students did it successfully and, to be able to record it in their notebooks, they constructed a table representation by themselves without any help from their teacher. After that, they managed to solve the problem by manipulating the objects. At the same time, each step in the solution was presented with changes in the table. The students were assessed before (pre-test) and after collaborative learning (test) in both academic years. The pre-test results were similar, but the test results were better in 2022. Therefore, it can be concluded that using concrete and table representations constructed by students in learning how to solve transportation problems makes collaborative learning more constructivist and more effective than when they use only table representations suggested by their teachers.
Subject Classification: 97M10, 97M40
-
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Programming Theorems and Their Applications
213-241Views:117One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.
Subject Classification: D40
-
Writing a textbook – as we do it
185-201Views:17Recent surveys studying mathematics teaching show that there is a great variety in the level of mathematics teaching in Hungary. To increase efficiency (and decrease differences between schools) it is essential to create textbooks with new attitudes. The experiment we started after the PISA survey of 2000, produced a textbook that is new, in some sense even unusual in its attitude and methods. This paper presents the experiences we gained in the course of this work. -
Comments on the remaining velocity project with reports of school-experiments
117-133Views:14The aim of this article is to introduce different possible solutions to the exercise referring to the calculation of "remaining velocity". We explain the possible approaches to the problem with the help of either using the tools of mathematics or other subjects. During the past few years, we have made Hungarian and Slovakian secondary school students solve the exercise, choosing from both children of average and of high abilities. The experince has shown that very few students were able to solve the problem by themselves, but with the help of their teachers, the exercise and the solution has been an eye-opener experience to all of them. A lot of students were even considering to drive more carefully in the future after getting their driving licenses. -
Promoting a meaningful learning of double integrals through routes of digital tasks
107-134Views:179Within a wider project aimed at innovating the teaching of mathematics for freshmen, in this study we describe the design and the implementation of two routes of digital tasks aimed at fostering students' approach to double integrals. The tasks are built on a formative assessment frame and classical works on problem solving. They provide facilitative and response-specific feedback and the possibility to request different hints. In this way, students may be guided to the development of well-connected knowledge, operative and decision-making skills. We investigated the effects of the interaction with the digital tasks on the learning of engineering freshmen, by comparing the behaviours of students who worked with the digital tasks (experimental group, N=19) and students who did not (control group, N=19). We detected that students in the experimental group showed more exibility of thinking and obtained better results in the final exam than students in the control group. The results confirmed the effectiveness of the experimental educational path and offered us interesting indications for further studies.
Subject Classification: 97D40, 97U70, 44A45
-
The background of students' performance
295-305Views:35The question to which we were seeking was: how can we reveal the students' strategies and mental process by following their work precisely and by finding out what correlation these have with their efficiency. Our aim was to understand the factors behind of students' achievement. We tried to follow up the process of problem solving by looking at the number of wrong turnings.