Search
Search Results
-
History of origin and development of replacement of plants crop rotations is in world agriculture
53-56Views:152In practice of world agriculture a long ago the known problem of decline of harvests of agricultural cultures at their permanent growing, scientific explanation of this phenomenon became possible only with appearance of natural sciences. At first the declines of harvests bound to the toxic action of root excretions cultures on her repeated sowing, with development of humus theory of feed of plants of diminishing of harvests at the permanent sowing began to explain impoverishment of soil on a humus.
During a few centuries the known farmers development the looks in relation to forming of scientific bases of construction of replacement of plants crop rotations in the world systems of agriculture, set history of their development and improvement. The analysis of influence of possibility of optimal satiation of replacement of plants crop rotations is conducted by agricultural cultures on the level of fertility of soil, water and nourishing modes and their productivity. For the terms of the insufficient moistening a positive action is marked black pair on the improvement of the water mode of soil in crop rotations.
In historiography the problem of introduction and mastering of replacement of plants crop rotations for the decision of scientific and practical tasks of agricultural production is represented in many-sided aspects, worked out and the recommended replacement of plants crop rotations that are base on zonal principle of development of world agriculture that passed the protracted term of test and counted on various specialization of economies. But for today development of scientific and technical progress requires intensification of agricultural production with the use of intensive crop rotations and growing of high-performance cultures.
Hereupon there was a necessity of realization of analysis of the systems of historical value of scientifically-practical knowledge about development and improvement of replacement of plants crop rotations, as it gives an opportunity to work out to recommending a production with the use of the most effective elements of the past on modern agrarian business and allows to forecast them on the future.
-
Nitrogen Supplying Capacity of Brown Forest Soil under Different Cropping Practices and 0.01 M CaCl2 Soluble Organic Nitrogen
17-23Views:111The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In this respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.
Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.
The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.
The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility. -
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
143-147Views:186In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.
Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.
The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.
In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.
The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.
However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.
As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.
-
Comparison of crop production in Hungary and Tanzania: climate and land use effects on production trends of selected crops in a 50-year period (1968-2019)
141-149Views:189A comparison of selected crop production for Hungary and Tanzania is presented. The roles of climate, land use and productivities of crops vary significantly in the two countries. Climate impacts the distribution of crops in Tanzania more than in Hungary as Tanzania’s climate is diverse with hot, humid, semi-arid areas, high rainfall lake regions, and temperate highlands. In contrast, the Hungarian climate is temperate and uniform across the country. Land use changes significantly in Tanzania than in Hungary. Tanzania indicates a reduction in forest land and expanding agricultural land associated mainly with the variation in crop productivities and population growth. To maintain sustainable crop production, increasing crop productivity is of paramount focus to meet the requirements of the growing population.
-
Study of the effects of silicon and sulphur foliar fertilization on yield components and yield in different winter oat cultivars
43-49Views:96The aim of this work was to study the effect of sulphur and silicon foliar fertilisation treatment in different Hungarian-bred winter oat cultivars on the yield and the yield components, e.g. panicle ear-1 numbers per square meters, number of panicle nodes, number of spikelets per panicle, and thousand kernel weight (TKW) in the 2022–2023 growing season. The obtained results show that the applied fertilisers influenced the measured parameters, and we get the highest yield at the combined treatment – where silicon and sulphur was both applied –, and unexpectedly the lowest when only silicon was applied during the growing period. We measured the highest number of panicles m-2 at the sulphur treated experimental plots, and the lowest at the silicon treatment. We measured the average number of nodes of the panicle, and we can say that the sulphur fertilisation caused significantly higher values than any other treatment. Talking about the spikelet numbers, we get the highest value at the sulphur fertilisation, and the lowest at the control plots. However, our result wasn’t that prominent in the case of TKW, we get the highest weight at the silicon treatment, and the lowest at the sulphur fertilisation.
-
Economics of site specific crop density in precision sunflower (Helianthus annuus L.) production
91-96Views:161In this research, the crop density of sunflower was examined, which, thanks to the tools available for precision crop production and knowledge of the market environment of sunflower production, best fits the heterogeneous areas of the given production zones and meets the economic requirements. These components together directly influence the effectiveness of sunflower production. In the year of 2021 and 2022, we carried out a site-specific crop density sunflower experiment in two fields with the same soil type, by sowing significantly different amounts of seeds within the given zones. We have established that the sunflower, although a plant with excellent adaptability, reacts sensitively to the place of production and the effect of the year, in zones with heterogeneous productivity, and shows a reaction to sowing with a variable number of seeds per zone, even when examined based on economic aspects.
-
Correlation between the weather in 2017 and the productivity of maize
89-93Views:181In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.In Hajdúszoboszló in 2017, up to October, 445.8 mm of rain fell, which is in line with the average values of 30 years, and is only 45.7 mm less than those. In 2017, the effect of increasing the plant number was slighter. Averaged over the observed fertilizer treatments and hybrids, the yield was 9.10 t ha-1 with 60 thousand plants ha-1, 9.11 t ha-1 with 70 thousand plants ha-1 and 9.12 t ha-1 with 80 thousand plants ha-1. Without fertilization, in most cases, increasing the plant number from 60 thousand plants ha-1 to 70-80 thousand plants ha-1 does not increased the yield but decreased it. With N80+PK treatment the yield changed between 8.90 and 11.27 t ha-1. The effect of increasing the plant number was just slightly observable and did not show a clear tendency. The effect of changing the plant number, even with the highest dosage of fertilizers, could not be detected adequately. In contrast with the plant number, the effect of the different fertilizer treatments was expressly traceable. Compared to the control treatment (treatment without fertilization), with N80+PK fertilizer dosage with 60 thousand plants ha-1 the yield increased by 3.36–4.99 t ha-1. The smallest demonstrable proof, i.e. the LSD5% was 0.22 t ha-1, which means that fertilization, in each case, significantly increased the yield. When analysing the effect of fertilization in the average of the hybrids and the different plant numbers, a yield of 5.61 t ha-1 could be detected, which value was 10.12 t ha-1 with N80+PK treatment and 11.61 t ha-1 with N160+PK treatment. Thus, it can be calculated that compared to the treatment without fertilization, the N80+PK treatment increased the yield by 4.51 t ha-1, while compared to the N80+PK treatment, the N160+PK treatment increased the yield by 1.49 t ha-1. In addition to agrotechnical factors, in maize production, the impact of the crop year is specifically of high importance.The average yield of hybrids (in the average of the different fertilizer treatments) was 6.81 t ha-1 in 2015, 11.86 t ha-1 in 2016 and 9.11 t ha-1 in 2017. When comparing the yield results against the precipitation data, it is clearly visible that the amount of rain fell in the January– October period is directly proportional to the average yield of maize. The effect of the crop year can be defined in a 5.05 t ha-1 difference in the yield. -
Effect of sufficient and deficit irrigation with different salt inputs on the yield of cucumber
19-25Views:111Soil salinisation is considered one of the major environmental hazards threatening agricultural productivity and can be accentuated by climate change as well as the use of low-quality water in irrigation. This is the case in our study area which is affected by secondary salinisation due to the use of saline irrigation water for horticultural production. Deficit irrigation technique is implemented especially in arid and semiarid regions due to its potential to optimise water productivity while maintaining or increasing crop yield. The main objective of this study was to compare the effect of irrigation with sufficient (SD) and deficit (DD) doses. This research was carried out in Karcag in 2020. Cucumber was grown on a meadow chernozem soil and was irrigated with SD and DD of two irrigation water qualities. Soil moisture was monitored and crop yields were recorded. Despite the differences in quality and quantity of water, the application of less water by DD maintained the same yield as SD. We found a non-significant difference between the average soil moisture contents under the treatments (15.5 v/v% for SD and 13.5 v/v% for DD). Deficit irrigation can be an efficient technique due to its potential for improving water use efficiency, maintaining sufficient soil moisture content favourable for proper crop development and yield.
-
Studies on yield stability in autumn wheat species
61-66Views:96The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and varieties) suitable for the region and the site. The sowing structure adapted to the ecological background increases the yield and decreases the yield fluctuation caused natural effects. Exact long-term trials are essential to develop variety structure of winter wheat production suitable for the given ecological conditions. We have examined the productivity and yield stability of genetically different state registered winter wheat varieties. We have compared the varieties’ yield results in plot trials, at similar agrotechnical conditions, in different cropyears. We have examined the absolute and relative (compared to the mean of varieties) yield of winter wheat varieties. We have valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the connection between productivity and yield stability of varieties. We have pointed out the varieties with good productivity and yield stability in given agroecological conditions.
According to the results of our examinations the developing of variety structure suitable for the agroecological conditions could increase the potential and effective yield level of wheat production. -
Seed treatment with Bacillus bacteria improves maize production: a narrative review
105-111Views:231Maize (Zea mays L.) is an important crop in relation to its production and consumption. Production of maize is constrained by soil infertility and poor quality seed. Microbial technologies like seed treatment with Bacillus bacteria improves the productivity of maize on infertile soil. However, due to variations in maize growth environments and Bacillus species, this review was conducted to identify the common species of Bacillus species used for seed treatment, and provide an overview of the effect of seed treatment with Bacillus on maize growth and yield. Results show that Bacillus subtilis, Bacillus pumilus and Bacillus amyloliquefaciens were the dominant species used for seed treatment. Bacillus was used as both a biofertiliser and biopesticide. The conspicuous positive effects of Bacillus were in plant height, shoot and root length, and shoot dry matter depending on the species. In terms of grain yield, Bacillus subtilis (8502 kg ha-1), Bacillus amyloliquefaciens (6822 kg ha-1) and Bacillus safensis (5562 kg ha-1) were the bacterial species that had an overall pronounced effect. The highest increase in grain yield was in the interactive effect of Bacillus megaterium + Bacillus licheniformis (18.1%) and sole Bacillus subtilis (15.6%), while Bacillus pumilus reduced grain yield by 4.8%. This shows that the improvement of maize productivity using Bacillus bacteria requires careful selection of the species for seed treatment.
-
The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
205-208Views:319Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.
-
Productivity and Nutrient Reaction of Maize Hybrids
78-83Views:97Several factors influence the quantity and stability of maize yield, the most important being the nutrient supply, the hybrid and precipitation. In 2004, during the maize growing season the precipitation was more than the 30 year’s average, with 68.3 mm, but the distribution was unfavorable. The experiment was carried out in Debrecen at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization.
The favorable results reached were due to the rainy season. The average yield varied between 7.78-9.67 tha-1. The DK 440, PR37M34, PR38A24, PR39D81 and PR36R10 of the hybrids reacted to higher fertilizer doses with significant growth yields, the yield (more than 11 tha-1) was the highest for N200, P125, K150 fertilizing. The other hybrids, DKC 5211, Mv Vilma and MV Maraton, gave similar results at the N120+PK fertilizer dose and the ensuing doses depressed the yield. Fertilization was more effective thanks to the precipitation. The fourth and fifth dose increased or decreased maize yield depending on the nutrient reaction of the hybrid. The agro-ecological optimum of NPK fertilization was N120, P75, K90 kgha-1.
During the experiment we tested the moisture loss of five hybrids. The rainy crop year’s effect on the seed moisture content at harvest was higher than in previous years. The seed moisture content hybrids at harvest which have shorter crop years (FAO 300) was 18-19%, and hybrids with longer vegetation periods had more than 20% seed moisture content. DK 440 hybrid had the intensive moisture loss of the five hybrids, at the start of the measurement, the seed moisture content was higher than 40%, and it decreased to 18.6% by harvesting. -
Investigation of combining ability and superiority percentages for yield and some related traits in yellow maize using line × tester analysis
5-14Views:251Combining ability estimation is an important genetic attribute for maize breeders in anticipating improvement in productivity via hybridization and selection. This research was carried out to investigate the genetic structure of the 27 F1 maize hybrids established from nine lines derived from Maize Research Department and three testers, to determine general combining ability (GCA), determine crosses showing specific combining ability (SCA) and superiority percentages for crosses. Nine lines, three testers, 27 F1 hybrids and two check commercial hybrids (SC162 and SC168) were studied in randomized complete block Design (RCBD) with three replications during 2016. The results of mean squares showed that significant and highly significant for most studied traits (days to 50% tasseling, days to 50% silking, plant and ear height, ear position, ear length, no. of kernels per row, 100-kernel weight and Grain yield). Estimates of variance due to GCA and SCA and their ratio revealed predominantly non-additive gene effects for all studied traits. Lines with the best GCA effects were: P2 (line 11) and P6 (line 21) for grain yield, for testers Gm174 and Gm1021 had significant GCA effects for grain yield. The hybrids P5×Gm1021, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1002 had significant and negative SCA effects for grain yield. Crosses P1×Gm174, P2×Gm1002, P5×Gm1021, P6×Gm174, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1021 were the best combinations manifested and significant superiority percentages over than check varieties (SC162 and SC168) for most studied traits. Therefore, these hybrids may be preferred for hybrid crop development.
Abbreviations: GCA general combining ability; SCA specific combining ability
-
Analysis of the photosynthetic parameters, the yield and the quality of winter wheat
101-106Views:184The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and
varieties) suitable for the region and the site. The aim of our work is to parametrize the plant assimilation, its intensity, dynamics and the
most important characteristics and the relationships to the quality in winter wheat trials. The measurements were carried out at the research
site of the University of Debrecen in small parcel experiments. We measured the leaf net CO2 assimilation rate, stomatal conductance,
intercellular CO2 level, the transpiration, the leaf temperature and the air temperature by the LICOR LI-6400 portable photosynthesis
system in field trials on the nutrient supply. The soil of the experimental area is calciferous chernozem with favorable water regime.
We have examined the photosynthetic activity, the productivity and yield stability of winter wheat varieties. We have compared the yield
results, at similar agrotechnical conditions in seven cropyears. We also determined the quality parameters of the winter wheat varieties.
Then we valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the
connections between assimilation parameters, the yield stability and quality parameters of wheat varieties. -
Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
15-22Views:323Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.
Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.
Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.
-
Leaf reflectance characteristics and yield of spring oat varieties as influenced by varietal divergences and nutritional supply
29-34Views:117Inadequacy of nutrients in the soil and sufficient inaccessibility to nutrients is caused by factors that affect production and productivity of spring oat varieties. Exogenous application of nutrient and real time nutrient assessment can therefore reverse these associated negative consequences. A field experiment was conducted to evaluate the response of spring oat varieties to sulphur and silicon based fertilisation. Eight spring oat varieties, four level of nutrient application was arranged in a split-plot design with three replications. The obtained results showed that foliar application of sulphur improves the grain yield of most nutrients responsive varieties by about 34.7%. However, application of silicon had shown a diminishing return association to grain yield of variety GK Kormorán, GK Pillangó, Lota, Panni. LAI, thousands grain weight, SPAD, NDVI was significantly (p < 0.05) influenced by genetic difference of the tested varieties, developmental plasticity, and nutrient application. Significantly higher grain yield was obtained from the variety Mv Pehely than the other tested varieties. Therefore, it could be inferred that a combined use of nutrient responsive spring oat varieties and sulphur containing fertilisers could be important agronomic practice to improve grain yield and to develop climate resilient oat varieties.
-
Environmental inspection agro tech – guarantee sustainable development agricultural systems
41-42Views:138Shown the expediency of the environmental expertise technologies of growing crops in terms of impact on soil fertility, crop phytosanitary status, quality, chemicals migration, biological soil activity, crop productivity, which ensure avoidance of adverse impact on the environment and human health.
-
Plant clinic in Nepal: An overview
5-10Views:126Plant clinics play an important role in supporting farmers in growing healthy crops and achieving higher productivity in Nepal. The development and operation of plant clinics in Nepal are assessed in this study through a comprehensive analysis of the institution via literature review and interaction with key stakeholders. The plant clinic approach of the agriculture extension system started in Nepal in 2008, followed up with engagement with CABI and the Government of Nepal. Enhancement of farmers' knowledge and skill, encouraging sustainable farming methods, and ultimately increasing crop yields are the impact of plant clinics. However, there are some challenges faced during the implementation of plant clinics in the existing agricultural extension systems. In Nepal, the plant clinics are primarily operated by agricultural technicians with expertise in plant protection, as well as IPM farmer facilitators and community business facilitators after attending an intensive plant doctor's training. Plant clinics have been integrated into the agricultural extension system by agro-advisory service provider of the government of Nepal. Despite institutionalisation, policy support needs to be strengthened to ensure the sustainability of the different components of the (e.g., data management, validation, monitoring, localised content, etc.) plant clinic in Nepal.
-
Influences of water deficiency on the productivity of young plants at different sites
371-378Views:145Water deficiency has become one of the most limiting factors of crop production in Hungary as the tendency in annual amounts of precipitation shows a decreasing tendency; therefore, it has become similar to those of Southern Europe. The most significant decrease in precipitation occurs typically during spring, approximately 20% of the data expressed in the averages of the last century. Studying the relationship between water deficiency as a stress factor and nutrient supply is important in order to improve the production efficiency of crops. Nowadays, this problem receives outstanding attention presented in numerous papers both in Hungary and globally, however, there are several questions yet to be answered. Our pot experiments were carried out under controlled greenhouse conditions in order to establish new data on these relationships. Experimental soils were typical for Western Transdanubia, taken from long-term field experiments representing four different site characteristics of the region. It was concluded from the results that drought periods during the early growth stages (i.e. 4–5 weeks after emergence) of plants may result in significant decreases in both dry matter production, nutrient concentrations, nutrient uptake and shoot:root ratios. Better nutrient supply, especially potassium, plays a significant role in reducing the negative effects of water deficiency.
-
Optimized balance between crop productivity, restoration and maintenance of vital soil functions and soil carbon sequestration and storage – the SmartSOIL (FP7) project
213-215Views:119Soils provide the most indispensable function of supporting the production of food and feed for a growing human population. At the same time they provide a range of regulating and supporting functions related to climate change and removal of greenhouse gases. The majority of the soil functions are closely linked to the flows and stocks of soil organic carbon (SOC); low levels of both flows and stocks may seriously interfere with several of the essential soil functions and thus affect the ecosystem services that soils deliver. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by intensive cultivation practices in agriculture. The aim of the SmartSOIL project is to link the results of different scientific fields through a holistic and multidisciplinary approach and as a result develop a decision making tool contributing to sustainable development.
-
The effect of rising concentration of atmospheric carbone dioxide on crop production
81-84Views:128In the atmosphere, the amount of carbon dioxide and other greenhouse gases are rising in gradually increasing pace since the Industrial Revolution. The rising concentration of atmospheric carbon dioxide (CO2) contributes to global warming, and the changes affect to both the precipitation and the evaporation quantity. Moreover, the concentration of carbon dioxide directly affects the productivity and physiology of plants. The effect of temperature changes on plants is still controversial, although studies have been widely conducted. The C4-type plants react better in this respect than the C3-type plants. However, the C3-type plants respond more richer for the increase of atmospheric carbon dioxide and climate change.
-
Effects of Site on Winter Wheat Quality 2002/2003
100-107Views:140The demand of modern societies for high food quality is evident. Thus, it is important for agriculture to produce row materials that are valuable for nutrition and have favourable characteristics for food processing. For this we need a knowledge about the factors which determine the quality of products. One of the main features of plant production is the “immobility”. This way the characteristics of the field influence the quality of the product, like example winter wheat, which is the main cereal in Hungary and Europe.
The Concordia Co. has charged the Central Laboratory of Debrecen University, Agricultural Centre with laboratory testing of the 2002/2003 winter wheat crop. The samples consist of thirteen winter wheat varieties from six different sites under the same cultivating conditions. Therefore, the important wheat quality factors were analysed solely against site conditions with the use of Győri’s “Z” index, which contains these parameters.
Soils were tested first. In this experiment excepting the negligible differences between the sites, there were no linear relations found between quality factors, productivity and soil features. The case is the same with the relation between precipitation, temperature and quality parameters. However, it must be noted that additional soil analyses are required to interpret the extreme results obtained from Karcag.
The calculated Győri’s Z-index shows relative stability concerning certain varieties, although considerable deviation can be found in varieties related to the sites. According to these results, it can bestated that winter wheat quality was not linearly influenced by soil and weather in the 2002/2003 vegetation period. As the same cultivation technology was used in the experiment, the index was determined by genetic features. It must be noted that these findings are relevant only to this experiment. -
The effect of season and fertilizer on the LAI, the photosynthesis and the yield of the maize hybrids with different genetic characteristics
27-34Views:99The experiment was carried out in Debrecen, at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization. The three factors of production technology jointly determine the successfully of maize production, but in different measure. The yield and the stability of yield of maize can be increased with hybrid-specific technologies.
In 2004-2005 experiment years the favorable results reached were due to the rainy season. There were significant difference between the productivity of maize hybrids. The N 40, P2O5 25, K2O 30 kg/ha treatment caused the highest increase of yield (3-5 t/ha) compared to the control (parcels without fertilization). The reaction of hybrids to the further fertilizer doses was different. The agro-ecological optimum of NPK fertilization was N 120, P 75, K 90 kg of the most hybrids.
During the experiment, we tested the moisture loss of the five hybrids. The seed moisture content at harvest was higher than in previous years due to the rainy seasons. The seed moisture content of harvest of FAO 200-300 hybrids were about 20%. It changed between 21-24% in the case of hybrids with longer vegetation period (FAO 400), the seed moisture content of Mv Vilma (FAO 510) was 24.21-25.04% in the average of fertilizer treatments. There is an important difference between the moisture loss ability of hybrids which changed 0.2-0.6%/day. The moisture loss of hybrids changed depending on the fertilizer treatment; usually, it was more favorable in the optimal fertilizer dose (N120+PK).
In the case of tested hybrids, we measured the highest LAI and photosynthetic activity at the optimal treatment, N 120, P2O5 75, K2O 90 kg/ha in the respect of efficiency and environmental protection, and the yield was high also for this treatment. There are significant difference between the LAI, the photosynthetic activity and the yield of hybrids, and these values could change depending on the treatment of fertilization.