Search

Published After
Published Before

Search Results

  • Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
    87-92
    Views:
    162

    The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

    We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

    With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

    In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

  • The effect of sowing date and plant density of winter oilseed rape (Brassica napus var. napus f. biennis L.) population
    213-215
    Views:
    196

    The experiment has been set up in the University of Debrecen Látókép Experimental Station in three different years (2014, 2015 and 2016), three different plant densities 200, 350 and 500 thousand ha-1, four replications of the same nutrient supply with using a line spacing of 45 cm. In the experiment, the fore crop was winter wheat in each year. The amount of weeds was observed five times in the last experimental year (2016/2017). In the three experimental years, the highest yield was harvested from the early sowing plot with the highest plant density. On the basis of the Pearson’s correlation analysis there was significant negative correlation (r=-0.583) between the effect of the annual year and yield of the hybrid.

  • Comparative analysis of inoculated soybean in extinguishing soil
    113-116
    Views:
    240

    In order to achieve higher yields, better technological methods offered in the current market, which aims to help the producers in the realization. To guarantee good yield because more and more people try with a variety of products, but you have to make the expected impact falls short.In this experiment, the following results were obtained: the soil suspension closely related to the inoculum of seed or seed treatment,which affects the soybean nodule formation, core saturation, and yield and protein-oil indicators. The soil suspension composition may exert positive and negative effects, which depend on how bacterial strains inoculum combined on the soybean seed surface. It is shown in our experiment very well, that between inoculum and inoculum as well as inoculum and seed treatment materials may be antagonism which setback to the soybean nodules formation and the yield, but not worsen the protein-oil indicators.

  • The changes of the most important quality parameters of szegedien triticale cultivars in long-term fertilization trials
    21-26
    Views:
    236

    We were monitoring the quality changes of 2 triticale cultivars from Szeged (GK Rege and GK Szemes) in Fülöpszállás, Hungary, in a longterm fertilizer trial in 2012/2013 and 2013/2014. The following fertilizer combinations were used: untreated control, single applied N and single applied PK, 30 and 60 kg ha-1 N or PK, and N and PK together in 30:30, 60:60 ha-1 ratio. We measured the following quality parameters: kernel hardness, crude protein content and farinograph quality number for wholemeal flour.

    Based on the results, the N fertilization treatment was beneficial to the tested triticale culticars in terms of kernel hardness and protein content as both indicators increased. The efficiency of the treatment was proportional to the N dose rate. On the other hand, the applied PK treatment decreased the kernel hardness and crude protein values. On these two parameters, the PK free, and high N dosage treatment (N60P0K0) had the most positive effect. However, the single applied N dose had no significant effect on farinograph quality numbers of the wholemeal flours, but PK dose had significantly positive impact on the tested cultivars. The N30P30K30 treatment resulted in the highest farinograph quality number, thus the low PK and low N combination was the most efficient treatment. The correlation analysis of the tested quality parameters showed positive correlation (0.9965***) between kernel hardness values and crude protein contents. Nevertheless, we found strong negative correlation between kernel hardness values and the farinograph quality number of the wholemeal flours (-0.9720***), as well as in the case of crude protein contents and farinograph quality number of the wholemeal flours (-0.9796***).

  • The role of green manure crops in Hungarian plant production
    49-53
    Views:
    241

    According to the data of KSH (Hungarian Central Statistical Office), the sowing area of cereals in the crop year 2016 was over 2.56 million ha, on which winter wheat and maize were produced in a rate of around 50–50%. Regarding these data it is obvious that the domestic cropping structure has been simplified and become unilateral. This unfavourable crop rotation system causes several problems. The number of Hungarian livestock decreased in the past decades. The amount of manure was 24 million tons in 1960, but only hardly 4.5 million tons of organic manure was applied in 2016. Therefore, the importance of other possibilities, alternatives for organic matter recovery have become enhanced. This is especially important from the aspect of sustainable plant production. The fact that the European Union has introduced new directives for subsidiaries in 2015 has to be noted as well.

    The objective of the set experiment is to find new technological solutions that are suitable for the execution of sustainable plant production by inadequate crop rotation, organic substance recovery conditions or under more unfavourable climatic conditions.

  • Long-term experiments on chernozem soil in the University of Debrecen
    357-369
    Views:
    248

    The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.

    Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.

  • Nutrient and water utilisation analyses of maize on chernozem soil in a long-term field experiment
    77-82
    Views:
    197

    We have conducted our research at the Látókép Research Farm of the University of Debrecen RISF Centre for Agricultural and Applied Economic Sciences during the cropyears of 2007, 2008 and 2009, on chernozem soil. In the case of crop rotation three models were set (mono-,bi- [wheat, maize] and triculture [pea, wheat, maize]). The five nutrient levels applied during the treatments were as follows: control [untreated], N60P45K45, N120P90K90, N180P135K135, N240P180K180. The conclusion of our results was the following: the crop rotation, the nutrient supply and the amount of precipitation all influenced the quantity of maize yield. As an effect of the increasing nutrient doses yield increase was experienced compared with the control treatments. In the average of the years the highest increase in yield excess/1 kg of NPK fertilizer was measured in the case of the monoculture (13 kg ha-1). As a consequence of is soil extorting effect the monoculture responded more intensively to the nutrient supplementation than the biculture or the triculture in the studied cropyears. In addition, we have observed that the three-year average yield amount per 1 mm precipitation was significantly influenced by the nutrient reserve of the soil. In the monoculture during the control treatment this value was 25 kg mm-1, the value measured in the case of the biculture turned out to be more favourable (42 kg mm-1).

  • Study of plant physiological parameters in winter oilseed rape (Brassica napus var. napus f. biennis L.) production on chernozem soil
    111-115
    Views:
    214

    We made plant physiology examinations in Arkaso winter oilseed rape hybrid substance: relative chlorophyll content (SPAD) and leaf area index (LAI) measurements. The experiment was set in University of Debrecen Agricultural Sciences Center at Látóképi Experimental Station in four replications, in two different sowing times (I. sowing date on 08/22/2014 and II. sowing date on 09/09/2014 sowing againhappened because of the incomplete germination in the second subtance 01/10/2014) Three different plant density 200, 350 and 500 thousand ha-1, under the same nutrient supply, 45 cm row spacing. The experiment was green crop of winter wheat. The relative chlorophyll content (SPAD) and leaf area index (LAI) measurements were made in seven different times. We measured the maximum value of chlorophyll content in the first sowing time at 500, and the second sowing time at 350 thousand ha-1 plant density. The measurement results proved that there was a linear relationship between the number of plants and the LAI. The maximum leaf area index values we measured in both the sowing time at 500 thousand ha-1 reached.

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
    205-208
    Views:
    311

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • The effect of sowing date and plant density in three maize hybrids germination and growth dynamics
    105-110
    Views:
    189

    The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.

  • The analysis of flour blends as affected by the behaviour of two different quality flours of triticale under different fertilizer treatments
    5-8
    Views:
    206

    Triticale is likely used in many countries in human consumption, due to its advantageous agronomical and nutritional properties mostly in blends. The baking quality of blends depends not just on the proportions of the used flours but also on their individual quality what can be influenced by fertilizer treatments.

    22 flour blends were prepared with commercial wheat flour and triticale wholemeal flour in proportions from 0% to 100%. The triticale was treated with different amount of fertilizers (N30P30K30, N60P0K0). Changes of wet gluten contents and extensograph parameters of the blends were determined. The quality of blends significantly depends on the fertilizer treatment of triticale beside the proportions of the flours. When the N60P0K0 treated triticale was used in blends, wet gluten and extensibility values were significantly higher, but in case of resistant to extensions (Rmax) the N30P30K30 treated samples gave higher values. The measured values of wet gluten and extensibility were above the expected values (synergism), while in the case of resistance to extension the expected values were higher than the measured values (antagonism).

  • The roles of mycotoxins in cereal crops production: A comparative study of Hungary and Tanzania
    151-159
    Views:
    232

    Although Hungary and Tanzania's climatic, soil, and technological conditions differ significantly in crop production, cereals crop cultivation is of paramount importance; maize crop dominates the cultivated area (Hungary 1 million ha, Tanzania 3 million ha) both from a feed and food point of view. Unfortunately, in both countries, fungal species (Fusaria, Aspergilli, Penicillia, etc.) that produce various mycotoxins on cereals, including maize grains, are a growing concern. The situation is complicated because these fungal species and their toxins can appear not only on cereals but also on other crops. Despite the prevalence of mycotoxins in both countries, studies show higher exposure risks and contamination above tolerable levels for human consumption in Tanzania to Hungary, with Tanzania observing acute aflatoxicosis.

  • Effects of agrotechnical factors on the quality and quantity of yield in winter wheat production
    69-75
    Views:
    167

    The present study was conducted to determine the effect of basic agrotechnical factors on the yield and quality of winter wheat. Two experiments were set in 2017/2018 growing season, where we studied the influence of different forecrops, fertilizing treatments and cultivars. 204 samples were measured with Single Kernel Characterization System and NIR grain analyser to determine protein (NIR-P), wet gluten (NIR-WG), Hardness Index (HI), kernel weight (KW) and kernel diameter (KD). Fertilizing had a significant effect on yield, KW, HI, NIR-P and NIR-WG, except KD. N90PK dosage was enough to realize yield potential for 6 out of 9 cultivars, but considering protein content N150PK dosage was needed. The forecrop had no significant influence on yield, KW, KD or HI, however sweet corn as previous crop had significant improving effect on NIR-P and NIR-WG compared to sunflower as forecrop. According to our data of correlation analysis, no negative relationship was found between yield and NIR-P, however HI was in medium positive correlation with NIR-P. The variety Vyckor had the highest yield, but in quality aspect, the highest NIR-P and NIR-WG values belonged to KG Kunhalom variety.

  • Test Results of Winter Wheat Varieties in 2002/2003 in the Hajdusag
    59-64
    Views:
    116

    We examined 35 early, 32 mid-season and 12 mid-late winter wheat varieties on calciferous chernozem soil after sunflower green crop in 2003. We set-up the experiment on small-size parcels, with 4 repetitions. In addition to the favourable agrotechnical conditions, with this year’s extreme ecological conditions the varieties resulted in weaker yields (2500-3200 kg/ha). Our findings have proven that there is a significant difference both between the maturity groups and between the yield potential of varieties with different genotypes, inside each group. Early varieties showed lower yield potentials according to the other two groups. The differences between the various variety’s yields was the smallest in the mid late group (893 kg/ha). Under given ecological and agrotechnical conditions, the following varieties showed the relatively best yields and best adaptability:
    • early maturing varieties (3200-3700 kg/ha): Mv palotás, KG Magor, Mv Mambo, Mv Emese, GK Margit, GK Tündér, GK Csongrád, GK Attila, Mv Amanda, Ukrainka;
    • mid season varieties (3300-3800 kg/ha): Győző, GK Marcal, Róna, GK Rába, Buzogány, MF Kazal, GK Mura, Hunor, GK Cipó, Mv Magvas, Mv Vilma, GK Zugoly, Jubilejnaja 50;
    • mid-late varieties (3200-3600 kg/ha): Maximus, Complet, KG Kunhalom, GK Holló.

  • Effect of two different cropyear and the agrotechnological factors on the agronomic characteristic of the winter weat in a lon-term experiment
    143-149
    Views:
    133

    We studied the effects of crop rotation, fertilization and crop protection technologies on occurence of the major ear- and leaf-diseases (powdery mildew, helminthosporiosis, leaf rust, Fusarium wilt) and the degree of lodging in the winter wheat variety Mv Pálma in two very different years (2006/2007=dry; 2009/2010=rainy). The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen CAAES in triculture (pea-wheat-maize) and biculture (wheat-maize) at five fertilization levels by applying three different crop protection technologies (extensive, average, intensive).
    In the cropyear of 2006/2007, the disease severity of leaf diseases was higher than the average in both crop rotations in spite of the fact that the weather during the whole vegetation period was dry. Infection by powdery mildew, helminthosporiosis and leaf rust increased with increasing fertilization, the highest infection was measured at the highest fertilization level (N200+PK) in the extensive crop protection technology. According to the results, no infection of ears by Fusarium and no lodging occurred in either bi- or triculture due to the dry year. The extremely rainy weather in 2009/2010 was favourable not only for the vegetative development of the stand, but also increased the occurance of leaf-, stalk- and ear-diseases and a high degree of lodging was observed. The highest infection by powdery mildew was observed in the plots with the highest fertilizer dosage under an extensive crop protection technology. A much higher helminthosporiosis infection was measured than in the cropyear of 2006/2007. The wet weather and higher than average temperature promoted the occurence and spreading of leaf rust. Under an extensive crop protection technology, a leaf rust infection of 24% and 31% was detected after maize and pea as a forecrop, respectively, in the N200+PK treatment. As opposed to 2006/2007, the disease severity of Fusarium was 3–8% and 2–7% in the control after maize and pea as a forecrop, respectively. This value, similarly to that of other pathogens, increased with increasing fertilization levels. Due to the large vegetative mass, a significant lodging was observed in the wheat stands in both bi- and triculture (17–100%, 12–100%). 

  • Plant growth analysis of wheat populations in a long-term field-experiment
    147-151
    Views:
    141

    The experiments were conducted as part of the long-term trial adjusted, in triculture (pea-wheat-corn) and biculture (wheat-corn), at three nutrition levels, with the use of one crop protection technologie (conventional) at the Látókép Research Site of the Centre of Agricultural Scienses, University of Debrecen, on a chernozem soil. The wheat variety used in the long-term trial was GK Csillag, which was sown at 5,8 million germs/ha.
    The effect of pre-crops and nutrient-supply levels on some growth-parameters (LAI, HI, LAD), just as SPAD-values and yield amounts of winter wheat has been investigated in this experiment. We tried to find out the extent of relationship between the different parameters, so we determined the relationships between different nutrient-supply levels, yield amounts, LAI- SPAD- and LAD-values – measured in the crop-year of 2010–2011 in different crop rotation systems – by using correlation analysis. It has been stated both in case of bi- and tri-culture crop-rotation systems that different fertilizer dosages had significantly affected the leaf area index dynamics and its maximal value, and that increasing N+PK fertilization has
    significantly increased the duration of leaves, as well. The highest SPAD-values were measured during the flowering and grain filling stages. However, we haven’t revealed significant differences between all fertilizer treatments. In case of the bi-culture crop-rotation system harvest index values showed an increasing tendency parallel to the increasing nutrient-supply levels, while in case of the tri-culture system this tendency was rather decreasing. However, these differences were
    not significant. Parallel to the increasing fertilizer dosages yield results were increased in a significant extent. At the same nutrient supply-levels 2088–4615 kg ha-1 higher yields were measured in the tri-culture than in the bi-culture system. The correlation analyses have confirmed that all of the investigated parameters (yield amount, LAI, SPAD, LAD) had almost in all cases close positive correlation to the nutrient-supply level and the yield amount in both crop-rotation systems. These results have confirmed that the leaf area, the leaf duration, the SPAD-values and the fertilization have altogether resulted in the production of maximum grain yields.

  • Genetic progress in winter wheat quality and quantity parameters
    71-75
    Views:
    164

    Wheat production is significant branch of Hungarian crop production (with about 1 million hectares of sowing area). Weather anomalies resulted by climate change have increased the importance of biological basis in wheat production. Yield quality and quantity parameters of three wheat genotypes sown on chernozem soil type after maize pre-crop were studied in a long-term field experiment. Yield amount of the studied genotypes varied between 2894 and 8074 kg ha-1 in 2017 and between 5795 and 9547 kg ha-1 in 2018 depending on the applied treatments. Based on our results it can be stated that in both studied crop years the highest yield increment was realized by the application of the nutrient supply level of N30+PK. As the result of the application of the optimum mineral fertilizer level – in contrast to the control – resulted in significant yield increment in both crop years. The results of the long-term field experiment prove that water utilization of the studied wheat varieties / hybrids was improved by the application of the optimal nutrient supply. Furthermore, the water utilization of the latest genotypes was more favorable by both the control and the optimum nutrient supply level treatments. Analyzing the quality parameters of winter wheat using the NIR method it has been stated that the quality results of the well-known genotype (GK Öthalom) were better than those of the new genotypes. A negative correlation between winter wheat quality and quantity parameters has also been confirmed. As the result of the mineral fertilizer application protein and gluten content of winter wheat increased to a significant extent.

  • Comparative study of different soybean genotypes in irrigation technology
    91-95
    Views:
    298

    In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.

  • The effects of agrotechnological factors on winter wheat yield in humid cropyear
    162-167
    Views:
    100

    The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
    (powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
    Pálma during the 2009/2010 crop year. The experiments were conducted in triculture (pea – wheat – corn) and biculture (wheat – corn), at
    five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
    the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
    significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
    vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
    extensive crop protection levels, when fertilizers were used at the highest dose.
    Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
    at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
    protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
    technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
    The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
    was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
    experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
    crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
    (0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
    correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
    lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
    triculture.

  • Efficiency of Fertilization in Sustainable Wheat Production
    59-64
    Views:
    118

    In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
    In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
    The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
    Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
    Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects.

  • Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
    133-135
    Views:
    108

    We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
    by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
    cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
    irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
    yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
    (2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
    crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
    N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
    models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
    cropyear on chernozem soil with using appropriate agrotechnical elements.

  • Relationships between nutrientsupply, genotype and some physiological properties of winter wheat
    141-145
    Views:
    155

    The chlorophyll content (SPAD), leaf area index (LAI) and leaf area duration (LAD) of three winter wheat varieties have been investigated on a chernozem soil. Three winter wheat varieties (GK Öthalom, Pannonikus and Genius) in three different nutrient-supply levels have been involved in our experiment in the crop-year of 2010/2011. The investigated physiological properties have been set against to the yield results. Upon the results of this comparison it has been stated that there is a close relationship between the investigated physiological properties and yield averages. The SPAD-values showed a growing tendency parallel to the growth of the nutrient-supply levels. The varieties have the highest SPAD-values at the nutri ent-level of N120+PK. Compared to the yield averages we have stated that varieties that have higher SPAD-values have realized higher yields as well. Higher nutrient dosages have increased in the leaf area. In case of all the three varieties the highest LAI-values were measured at the flowering stage (23. 05.) in the treatment whit N120+PK. Varieties with higher leaf area have produced higher yields as well. Parallel to the increasing nutrient-supply levels the value of leaf area duration increased as well. We measured the highest LAD-values in the treatment of N120+PK nutrient-level. By the LAD-values it can be stated that more durable and larger leaf area has been produced in the flowering and ripening phenophases, due to the higher nutrient-dosages. Analysing the relationships between the results it can be stated that there is a strong positive relationship between fertilizer treatments and SPAD-, LAI- and LAD-values. The genotype showed a strong positive correlation to SPAD-values. Yield averages showed strong positive correlation to SPAD-, LAI- and LAD-values as well.

  • The Effect of Forecrop and Plant Protection on the Pathology Parameters and Yields of Winter Wheat
    84-89
    Views:
    108

    We carried out our experiment in the cropyears of 2000/2001, 2001/2002 and 2002/2003, on calcareous chernozem soil, at the experimental site of the Debrecen University Farm and Regional Research Institute, at Látókép. We examined the disease resistance and the yield quantity of Mv Magvas variety by adopting different forecrops and plant protection technologies, at 30+30 N level and at normal cereal row spacing. We applied two forecrops (wheat and pea) and two plant protection technologies (extensive and intensive). We measured the rate of infection by population survey in the first ten days of June.
    In the course of our examinations, we found, that the rate of powdery mildew infection was higher in the thicker population sown after pea forecrop in all three years, as powdery mildew is not a typical cereal disease.
    The infection rate of leaf mildew and DTR (Dreschlera tritici-repentis) was higher after wheat forecrop in all examined years, because these are typical wheat diseases and infection centres in the soil promote the spreading of these diseases. However, it was possible to parry the adverse effect of forecrops by intensive plant protection.
    Due to the chernozem soil, wich has good water management features, and due to the good preparation of the seedbed, the effect of forecrops on yield quantity did not appear in the examined years. The quantity of the yield was only slightly larger after pea forecrop in the cropyears of 2000/2001 and 2002/2003 than after wheat. Nonetheless, the data of technical literatures state that the yield quantity can be larger, even by 15-20%, after pea forecrop.
    In the course of intensive plant protection technology, we applied systemic pesticides, while in the course of environmentally sound technology, we used contact pesticides of sulphur content. In those populations that were treated with environmentally sound plant protection technology, infection rate was higher in all three years.
    Yield quantities were somewhat lower in the course of applying extensive, environmentally sound technology, because diseases appeared in these populations to the higher degree. Powdery mildew does not, but leaf mildew and Dreschlera tritici-repentis have a significant yield decreasing effect. With appropriate, well-selected fungicides, we were able to keep every leaf diseases well in hand, and the rate of infection was almost independent of the influence of the breeding year.

  • Role of some agrotechnical elements in the precision crop technology of cereals
    241-244
    Views:
    130

    The crop models and precision technology have an important role in the development of winter wheat and maize agrotechnics, which crops have determinative role in Hungarian crop production. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in our longterm experiments on chernozem soil. Our scientific results proved that the high yields, and good yield stability were obtained in the input-intensive crop models. Maize had lower ecological adaptive capacity than winter wheat. The optimatization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha-1 in extensive and 8 and 10 t ha-1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha-1 and 10 and 15 t ha-1, respectively.

  • Baking quality of winter wheat (Triticum aestivum L.) in the long-term experiments on chernozem soil
    152-156
    Views:
    92

    Agriculture has traditionally an important role in Hungarian economy and rural development. About 75 % of Hungary’s total territory
    is under agricultural land use. Because of ecological conditions and production traditions cereals (wheat, maize etc) have the greatest
    importance in Hungarian crop production. In the 1980’s the country-average yields of wheat were about 5,0-5,5 t ha-1 („industrial-like”
    crop production-model). In the 1990’s the yields of wheat dropped to 4,0 t ha-1 because of low input-using and wide application of the issues
    of environmental protection and sustainability. Winter wheat production for quality has a decisive role in certain regions of Hungary
    (eastern and middle-parts).
    The quality of wheat is complex and different. Three major growing factor groups determine the quality of winter wheat: genotype,
    agroecological conditions and agrotechnical factors. In wheat production for quality the selection of the variety is the most important
    element. Our long-term experiments proved that the quality traits of a variety means the highest (maximum) limit of quality which could not
    be exceeded in fact. During the vegetation period of wheat the different ecological and agrotechnical factors could help or on the contrary
    could demage the quality parameters of wheat.
    The agrotechnical factors determining the baking quality of wheat can be divided into two groups: the first group means the factors with
    direct effects on quality (fertilization, irrigation, harvest); the second group contains the elements with indirect effects on quality (crop
    rotation, tillage, planting, crop protection).
    Appropriate fertilization could help to manifest the maximum of quality parameters of a wheat genotype and could reduce the qualityfluctuation
    in unfavourable ecological and agrotechnical conditions.