No. 1 (2022)
Articles

Comparison of crop production in Hungary and Tanzania: climate and land use effects on production trends of selected crops in a 50-year period (1968-2019)

Published May 26, 2022
Muhoja Sylivester Nyandi
University of Debrecen Kálmán Kerpely Doctoral School
Péter Pepó
Institute of Plant Science, University of Debrecen
pdf

APA

Nyandi, M. S., & Pepó , P. . (2022). Comparison of crop production in Hungary and Tanzania: climate and land use effects on production trends of selected crops in a 50-year period (1968-2019). Acta Agraria Debreceniensis, (1), 141–149. https://doi.org/10.34101/actaagrar/1/10890

A comparison of selected crop production for Hungary and Tanzania is presented.  The roles of climate, land use and productivities of crops vary significantly in the two countries. Climate impacts the distribution of crops in Tanzania more than in Hungary as Tanzania’s climate is diverse with hot, humid, semi-arid areas, high rainfall lake regions, and temperate highlands. In contrast, the Hungarian climate is temperate and uniform across the country. Land use changes significantly in Tanzania than in Hungary. Tanzania indicates a reduction in forest land and expanding agricultural land associated mainly with the variation in crop productivities and population growth. To maintain sustainable crop production, increasing crop productivity is of paramount focus to meet the requirements of the growing population.

Downloads

Download data is not yet available.
  1. Angelsen, A.–Shitindi, E.F.K.–Aarrestad, J. (1999): Why do farmers expand their land into forests? Theories and evidence from Tanzania. Environment and Development Economics, 4(3), 313–331.
  2. Artyszak, A.–Pozsár, B.–Michalska-Klimczak, B.–Wyszynski, Z. (2016): Sugar and sugar beet production in Hungary and Poland in the years 1995–2014. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 18(3).
  3. Asadi, S.–Bannayan, M.–Monti, A. (2019): The association of crop production and precipitation; a comparison of two methodologies. Arid Land Research and Management, 33(2), 155–176.
  4. Asseng, S.–Cammarano, D.–Basso, B.–Chung, U.–Alderman, P.D.–Sonder, K.–Reynolds, M. –Lobell, D.B. (2017): Hot spots of wheat yield decline with rising temperatures. Global change biology, 23(6), 2464–2472.
  5. Barlow, K.M.–Christy, B.P.–O’leary, G.J.–Riffkin, P.A.–Nuttall, J.G. (2015): Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field crops research, 171, 109–119.
  6. Bisanda, S.–Mwangi, W.M.–Verkuijl, H.–Moshi, A.J.–Anandajayasekeram, P. (1998): Adoption of maize production technologies in the Southern Highlands of Tanzania. CIMMYT.
  7. Chen, P.J.–Antonelli, M. (2020): Conceptual Models of Food Choice: Influential Factors Related to Foods, Individual Differences, and Society. Foods, 9(12), 1898.
  8. Claassen, M.A.–Klein, O.–Corneille, O. (2016): Poverty & obesity: how poverty and hunger influence food choices. European Health Psychologist, 18(Supp), 337–339.
  9. DeFries, R.S.–Asner, G.P.–Houghton, R.A. (2004): Ecosystems and land use change. Washington DC American Geophysical Union Geophysical Monograph Series, 153.
  10. Dirmeyer, P.A.–Niyogi, D.–de Noblet-Ducoudré, N.–Dickinson, R.E.–Snyder, P.K. (2010): Impacts of land use change on climate. Int. J. Climatol, 30(13), 1905–1907.
  11. Dorgatt, N.–Morgan-Brown, T.–Lyimo, E.–Mbilinyi, B.–Meshack, C.K.–Sallu, S.M.–Spracklen, D.V. (2020): Agriculture is the main driver of deforestation in Tanzania. Environmental Research Letters, 15(3), 034028.
  12. Edmeades, G.O.–Trevisan, W.–Prasanna, B.M.–Campos, H. (2017): Tropical maize (Zea mays L.). In Genetic improvement of tropical crops. Springer, Cham. pp. 57-109.
  13. Epule, T.E.–Dhiba, D.–Etongo, D.–Peng, C.–Lepage, L. (2021): Identifying maize yield and precipitation gaps in Uganda. SN Applied Sciences, 3(5), 1–12.
  14. FAO/UNEP (1999): Terminology for integrated resources planning and management. Food and Agriculture Organization/United Nations Environmental Programme: Rome and Nairobi.
  15. Food and Agriculture Organisation of the United Nations statistics (FAOSTAT) available at {https://www.fao.org/faostat/en/#home} ˙accessed 12th March 2022.
  16. Foley, J.A.–DeFries, R.–Asner, G.P.–Barford, C.–Bonan, G.–Carpenter, S.R.–Chapin, F.S.–Coe, M.T.–Daily, G.C.–Gibbs, H.K.–Helkowski, J.J–Holloway, T.–Howard, E.A.–Kucharik, C.J.–Monfreda, C.–Patz, J.A.–Prentice, I.C.–Ramankutty, N.–Snyder, P.K. (2005): Global consequences of land use. science, 309(5734), 570–574.
  17. Geist, H.J.–Lambin, E.F. (2002): Proximate Causes and Underlying Driving Forces of Tropical Deforestation Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience, 52(2), 143–150.
  18. Hale, I.L.–Mamuya, I.–Singh, D. (2013): Sr31-virulent races (TTKSK, TTKST, and TTTSK) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici are present in Tanzania. Plant Disease, 97(4), 557–557.
  19. Hatfield, J.L.–Prueger, J.H. (2015): Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10, 4–10.
  20. Hungarian central statistical office (KSH) 2022 at { https://www.ksh.hu/?lang=en}
  21. Hungarian meteorological service (OMSZ) 2022 at {https://www.met.hu/en/idojaras/}
  22. Izakovičová, Z.–Špulerová, J.–Petrovič, F. (2018): Integrated approach to sustainable land use management. Environments, 5(3), 37.
  23. Kaliba, A.R.–Verkuijl, H.–Mwangi, W.M.–Moshi, A.J.–Chilagane, A.–Kaswende, J.S.–Anandajayasekeram, P. (1998a): Adoption of maize production technologies in Eastern Tanzania. CIMMYT.
  24. Kaliba, A.R.–Verkuijl, H.–Mwangi, W.M.–Mwilawa, A.J.–Anandajayasekeram, P.–Moshi, A.J. (1998b): Adoption of maize production technologies in central Tanzania. CIMMYT.
  25. Larson, N.–Story, M. (2009): A review of environmental influences on food choices. Annals of Behavioral Medicine, 38(suppl_1), s56-s73.
  26. Lithourgidis, A.S.–Dordas, C.A.–Damalas, C.A.–Vlachostergios, D. (2011): Annual intercrops: an alternative pathway for sustainable agriculture. Australian journal of crop science, 5(4), 396–410.
  27. Lobell, D.B.–Field, C.B. (2007): Global scale climate–crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.
  28. Mafuru, J. (1999): Adoption of maize production technologies in the Lake Zone of Tanzania. CIMMYT.
  29. Mäkinen, H.–Kaseva, J.–Trnka, M.–Balek, J.–Kersebaum, K.C.–Nendel, C.-Gobin, A.–Olesen, J.E.–Bindi, M.–Ferrise, R.–Moriondo, M.–Rodrígez, A.–Ruiz-Ramos, M.–Takác, J.–Bezák, P.–Venterella, D.–Ruget, F.–Carpallades, G.–Kahiluoto, H. (2018): Sensitivity of European wheat to extreme weather. Field Crops Research, 222, 209–217.
  30. Martin, J.H.–Leonard, W.H. (1949): Principles of field crop production. Macmillan, New York.
  31. Marton, L.CS. (2013): Hybrid maize in Hungary is 60 years old. Spitko LCMaT (ed), 60, 10–16.
  32. Matonya, J. (2013): Influence of genotype x environment interaction on performance of selected maize (Zea mays L.) hybrids in southern highlands of Tanzania (Doctoral dissertation, Sokoine University of Agriculture).
  33. McKeague, J.A.–Modestus, W.K. (1991): Water as a limiting factor in wheat production in two areas of the northern highlands of Tanzania. Tropical agriculture, 68(4), 349–355.
  34. Pryor, S.C.–Scavia, D.–Downer, C.–Gaden, M.–Iverson, L–Nordstrom, R.–Robertson, G.P. (2014): Midwest. Climate change impacts in the United States: The third national climate assessment. In: Melillo, JM; Richmond, TC; Yohe, GW, eds. National Climate Assessment Report. Washington, DC: US Global Change Research Program: 418–440.
  35. Qu, Y.–Jiang, G.H.–Li, Z.–Tian, Y.–Wei, S. (2019): Understanding rural land use transition and regional consolidation implications in China. Land Use Policy, 82, 742–753.
  36. Rannestad, M.M.–Gessesse, T.A. (2020): Deforestation and subsequent cultivation of nutrient poor soils of miombo woodlands of Tanzania: Long term effect on maize yield and soil nutrients. Sustainability, 12(10), 4113.
  37. Ray, D.K.–Gerber, J.S.–MacDonald, G.K.–West, P.C. (2015): Climate variation explains a third of global crop yield variability. Nature communications, 6(1), 1–9.
  38. Rosenzweig, C.–Iglesius, A.–Yang, X.B.–Epstein, P.R.–Chivian, E. (2001): Climate change and extreme weather events-Implications for food production, plant diseases, and pests.
  39. Rudel, T.K. (2009): How do people transform landscapes? A sociological perspective on suburban sprawl and tropical deforestation. American Journal of Sociology, 115(1), 129–154.
  40. Scopel, E.–Triomphe, B.–Affholder, F.–Da Silva, F.A.M.–Corbeels, M.–Xavier, J.H.V.–Lahmar, R.–Recous, S.–Bernoux, M.–Blanchart, E.–de Carvalho Mendes, I.–De Tourdonnet, S. (2013): Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for sustainable development, 33(1), 113–130.
  41. Shiferaw, B.–Tesfaye, K.–Kassie, M.–Abate, T.–Prasanna, B.M.–Menkir, A. (2014): Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and climate extremes, 3, 67–79.
  42. Smutka, L.–Patrik, R.–Josef, P.–Helena, Ř.–Elena, H.–Jaroslav, U. (2016): “Czech and Slovak sugar industry – more than twenty years after disintegration of Czechoslovakia”. LCaŘ 132, 4: 144–149.
  43. Soane, B.D.–van Ouwerkerk, C. (Eds.). (2013): Soil compaction in crop production. Elsevier.
  44. Swain, D.K.–Rawade, Y.A.–Mohanty, U.C. (2013): Climate impact analysis and adaptations for sustainable rice production system.
  45. Swaney, D.P.–Howarth, R.W.–Hong, B. (2018): Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987–2012. Science of the Total Environment, 635, 498–511.
  46. Thapa, P. (2021): The Relationship between Land Use and Climate Change: A Case Study of Nepal.
  47. Van der Velde, M.–Tubiello, F.N.–Vrieling, A.–Bouraoui, F. (2012): Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Climatic change, 113(3), 751–765.
  48. WB. (2022): The World Bank group. Climate change knowledge portal-For development practitioners and policymakers: Tanzania country profile Online available at https://climateknowledgeportal.worldbank.org/country/tanzania {accessed on February 7 2022}
  49. Westengen, O.T.–Ring, K.H.–Berg, P.R.–Brysting, A.K. (2014): Modern maize varieties going local in the semi-arid zone in Tanzania. BMC Evolutionary Biology, 14(1), 1–12.
  50. Wheeler, T.R.–Craufurd, P.Q.–Ellis, R.H.–Porter, J.R.–Prasad, P.V. (2000): Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1–3), 159–167.
  51. Zorita, E.–Tilya, F.F. (2002): Rainfall variability in Northern Tanzania in the March-May season (long rains) and its links to large-scale climate forcing. Climate Research, 20(1), 31–40.