Search
Search Results
-
Task reformulation as a practical tool for formation of electronic digest of tasks
1-27Views:35Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article. -
Fehleranalyse beim Lösen von offenen Aufgaben Ergebnisse einer empirischen Studie in der Grundschule
83-113Views:12Open problems play a key role in mathematics education, also in primary school. However, children in primary school work in many relations in a different way from learner in secondary school. Therefore, the (possibly) first confrontation with an open task could be problematical. Within the framework of an international paper and pencil test it was examined how far children of primary school notice the openness of a task and which mistakes they do during working on that task. In particularly are meant by openness different interpretations of the task, which all lead to a set of numbers with more than one element as a result. For evaluation, a common classification system was adapted by slightly modification of the original system. -
Task variations for backtrack
107-120Views:79This article has been written for informatics teachers who want to issue back-track based tasks on their lessons or as homework or on competitions. We present a few methods to generate a more complicated problem from a simpler task, which will be more complex, and its solution needs a good idea or trick. Starting from an example, we lead the reader through increasingly di cult task variations.
Subject Classification: 97P50
-
Potential, actual and practical variations for teaching functions: cases study in China and France
157-166Views:77This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.
Subject Classification: 97-06
-
Solution of an open reality based word-problem in two secondary schools
143-156Views:106This survey through an open reality based word problem is intended to assess - in two secondary schools in Komárom (Hungary) and in Komarno (Slovakia, Hungarian name: Révkomárom) in grade 10 - the ability of students to realize openness of a task. The comparison is justified by the fact that the language of teaching is Hungarian in both secondary schools, but with different curricula. This survey is related to the Content Pedagogy Research Program by the Hungarian Academy of Sciences. It is preceded by several surveys with a word problem (Pocket Money) of the third author and led by her between 2012 and 2015, and within that project in 2017 within a large sample test, among about 1500 students and university students in Hungary (?, ?) (?, ?). In our research we wanted first to assess how openly work students in two schools of the two cities mentioned in solving the same task. The answer to this question was similar to the large sample test results, so most of the students worked in a closed way, when solving this word problem. So we went on and tried to explore how students thought about their own solution given to this task, through mixed-type interviews.
Subject Classification: 97D70, 97F90, 97D50, 97M10
-
Algorithmics of the knapsack type tasks
37-71Views:27We propose a new kind of approach of the teaching of knapsack type problems in the classroom. We will remind you the context of the general knapsack-task and we will classify it, including the two most popular task variants: the discrete and the continuous one. Once we briefly present the solving algorithm of the continuous variant, we will focus on the solving of the discrete task, and we will determine the complexity of the algorithms, looking for different optimizing possibilities. All these issues are presented in a useful way for highschool teachers, who are preparing students in order to participate in different programming contests. -
Analyse von Lösungswegen und Erweiterungsmöglichkeiten eines Problems für die Klassen 7–11
231-249Views:31Making several solutions for a problem i.e. the generalization, or the extension of a problem is common in the Hungarian mathematics education.
But the analysis of a problem is unusual where the connection between the mathematical content of the task and of its different formulations is examined, solutions from different fields of mathematics are presented regarding the knowledge of different age groups, the problem is generalized in different directions, and several tools (traditional and electronic) for solutions and generalizations are presented.
This kind of problem analysis makes it viable that during the solution/elaboration several kinds of mathematical knowledge and activities are recalled and connected, facilitating their use inside and outside of mathematics.
However, an analysis like this is not unfamiliar to the traditions of the Hungarian problem solving education – because it also aims at elaborating a problem – but from several points of view.
In this study, a geometric task is analysed in such a way. -
Analysis of the affective factors of learning mathematics among teacher trainees
225-254Views:39The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training. -
Learning and teaching combinatorics with Sage
389-398Views:45Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
An improvement of the classification algorithm results
131-142Views:24One of the most important aspects of the precision of a classification is the suitable selection of a classification algorithm and a training set for a given task. Basic principles of machine learning can be used for this selection [3]. In this paper, we have focused on improving the precision of classification algorithms results. Two kinds of approaches are known: Boosting and Bagging. This paper describes the use of the first method – boosting [6] which aims at algorithms generating decision trees. A modification of the AdaBoost algorithm was implemented. Another similar method called Bagging [1] is mentioned. Results of performance tests focused on the use of the boosting method on binary decision trees are presented. The minimum number of decision trees, which enables improvement of the classification performed by a base machine learning algorithm, was found. The tests were carried out using the Reuters 21578 collection of documents and documents from an internet portal of TV Markíza. -
Proof step analysis for proof tutoring - a learning approach to granularity
325-343Views:32We present a proof step diagnosis module based on the mathematical assistant system Ωmega. The task of this module is to evaluate proof steps as typically uttered by students in tutoring sessions on mathematical proofs. In particular, we categorise the step size of proof steps performed by the student, in order to recognise if they are appropriate with respect to the student model. We propose an approach which builds on reconstructions of the proof in question via automated proof search using a cognitively motivated proof calculus. Our approach employs learning techniques and incorporates a student model, and our diagnosis module can be adjusted to different domains and users. We present a first evaluation based on empirical data. -
A proposed application of Monte Carlo method in teaching probability
37-42Views:38Pupils' misconception of probability often results from lack of experience. Combining the concept of probability and statistics, the proposed application is intended for the teachers of mathematics at an elementary school. By reformulating the task in the form of an adventure, pupils examine a mathematical problem, which is too difficult for them to solve by combinatorial method. By recommending the simulation of the problem, we have sought to provide pupils with valuable experience of experimenting, recording and evaluating data. -
A mathematical and didactical analysis of the concept of orientation
111-130Views:41The development of spatial ability, in particular the development of spatial orientation is one of the aims of mathematics education.
In my work, I examine the concept of orientation, especially concepts of between, left, right, below, above, front, back, clockwise and anticlockwise. I analyze answers given for a simple orientation task prepared for elementary school pupils. I would like to call attention to the difficulties pupils have even in case of solving simple orientation problems.
We have different ways to know more about the crucial points of a concept, especially of the concept of orientation. In this study I bring out one of them. I analyze and make some didactical conclusions about the origin and the axiomatic structure of orientation. -
Different approaches of interplay between experimentation and theoretical consideration in dynamic geometry exploration: An example from exploring Simson line
63-81Views:31Dynamic geometry environment (DGE) is a powerful tool for exploration and discovering geometric properties because it allows users to (virtually) manipulate geometric objects. There are two possible components in the process of exploration in DGE, viz. experimentation and theoretical consideration. In most cases, there is interplay between these two components. Different people may use DGE differently. Depending on the specific mathematical tasks and the background of individual users, some approaches of interplay are more experimental whereas some other approaches of interplay are more theoretical. In this paper, different approaches of exploring a geometric task using Sketchpad (a DGE) by three individual participants will be discussed. They represent three different approaches of interplay between experimentation and theoretical consid- eration. An understanding of these approaches may contribute to an understanding on the mechanism of exploration in DGE. -
Our digital education habits in the light of their environmental impact: the role of green computing in education
69-86Views:121With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.
Subject Classification: 97P99, 94-06, 94-02
-
Teaching integral transforms in secondary schools
241-260Views:33Today, Hungarian students in the secondary schools do not know the idea of complex numbers, and they can not integrate except those ones who learn mathematics in advance level. Without this knowledge we can teach Fourier transform for students. Why should we teach Fourier transform (FT) or Wavelet transform (WT) for them? To teach image file formats like JPEG, (JPEG2000) we need to talk about integral transforms. For students who are good in computer programming, writing the program of 1D FT or 2D FT is a nice task. In this article we demonstrate how we can teach Fourier and Wavelet transform for students in secondary school. -
Teaching student teachers: various components of a complex task
55-72Views:26In this paper we summarize various aspects of teacher training and teaching student teachers (mainly concerning teachers of upper secondary school and High school). We stress several hints and recommendations to better achieve the obviously important aim: they should learn doing, understanding and teaching mathematics!
Of course, our view is particularly influenced by European traditions, but we think most of them equally apply to teacher training and teaching student teachers elsewhere. Neither is the paper meant to give an all sided overview about the problem field of teacher education as a whole, nor does it contain provocative, completely new ideas. We just want to describe our view of some aspects, based primarily on our personal experience in the mentioned field. -
Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
51-67Views:116In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.
Subject Classification: 97D40
-
Teaching reliability theory with the Computer Algebra System Maxima
45-75Views:32The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education. -
Computer cooking vs. problem solving
35-58Views:66Computer cooking is a task-related phenomenon where students (end-users) must blindly follow a long list of orders without any connection to the content of the problem, if there is any. Despite its low efficacy, this method is widely used and accepted in informatics both in the learning-teaching process and testing. The National Base Curriculum 2020 in Hungary is in complete accordance with the ‘Informatics Reference Framework for Schools’, but the course books hardly use the latest results of computer education research. The present paper provides examples of how the results of computer education research can be integrated into teaching-learning materials and classroom practices and discusses the effectiveness and consequences of the different solutions, where tool-centred approaches are compared to problem-focused solutions.
Subject Classification: 94-01
-
How the derivative becomes visible: the case of Daniel
81-97Views:35This paper reports how an advanced 11th-grade student (Daniel) perceived the derivative from a graph of a function at a task-based interview after a short introduction to the derivative. Daniel made very impressive observations using, for example, the steepness and the increase of a graph as well as the slope of a tangent as representations of the derivative. He followed the graphs sequentially and, for example, perceived where the derivative is increasing/decreasing. Gestures were an essential part of his thinking. Daniel's perceptions were reflected against those of a less successful student reported previously [Hähkiöniemi, NOMAD 11, no. 1 (2006)]. Unlike the student of the previous study, Daniel seemed to use the representations transparently and could see the graph as a representation of the derivative. -
Information System’s experiences of EGERFOOD project making use of it in the education of the database management
197-210Views:28We present in this article the background of a developed food safety tracking system searched and formed in the Regional Knowledge Centre of Eszterházy Károly College, the requirements following from this, and by way of the requirements towards the information system appearing expectations. The development of the consumer centre system is a complex task which provides fast and cost-effective information for consumers, food producers and concerned authorities. It accomplishes severe expectations of the tracking system in connection with data security and encryption beside all this. We demonstrate in this article that forming of database model why we chose the general model. We also demonstrate what kind of SQL server we chose for buffer servers and central data warehouse. We wish to support our choosing with the result of done efficiency examinations. It is important viewpoint what kind of database planning principles we base these examinations on and how we match them to the requirements of the system. As software engineers took part in the development effectively from the first minute of the planning of the system, we can examine with what this project work was able to raise students' qualification and knowledge in addition to the general curricular substance. -
Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
195-220Views:28Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition. -
Teaching geometry using computer visualizations
259-277Views:20In this work we study the development of students' creativity using computer-aided-teaching during IT classroom. Teaching geometry in Bolyai Grammar School specialized natural science classes is not an easy task. Here is introduced a new didactic means of teaching geometry which nevertheless requires the same effort to understand the material, but uses a different more active method to familiarize students with the topics. Traditional methods, and the use of compasses and rulers are not omitted either, as they develop the students' motor skills. -
Mapping students’ motivation in a problem oriented mathematics classroom
111-121Views:65This research focuses on mapping students’ motivation by implementing problem-solving activities, namely how the problem-oriented approach affects the students’ commitment, motivation, and attitude to learning. As a practicing teacher, the author faced difficulties with motivation and sought to improve her practice in the form of action research as described in this paper. Based on the literature, the author describes sources of motivation as task interest, social environment, opportunity to discover, knowing why, using objects, and helping others. The author discusses the effect of problem-oriented teaching on the motivation of 7th-grade students. In this paper, the results of two lessons are presented.
Subject Classification: 97C20, 97D40, 97D50, 97D60