Search

Published After
Published Before

Search Results

  • Answers offered by computer algebra systems to equations from school textbooks
    125-138
    Views:
    34
    This paper is an attempt to develop a strategy and methods for investigating and comparing the answers offered by computer algebra systems and the school answers. After primary (pilot) investigation of how well 8 computer algebra systems handle equations from school textbooks, it is possible to conclude that the systems are mostly reliable and give reasonable answers. Some remarks regarding a somewhat unexpected answer obtained can be easily explained by built-in standards and notions, which can differ from school assumptions. In other cases the differences from school could be corrected by certain commands.
  • Regula falsi in lower secondary school education
    169-194
    Views:
    35
    The aim of this paper is to offer some possible ways of solving word problems in lower secondary school education. Many studies have shown that pupils in lower secondary school education (age 13-14) encounter difficulties with learning algebra. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. By numerical checking methods we mean guess-and-check and trial-anderror. We will give a detailed presentation of the false position method. In our opinion this method is useful in the loweer secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the primary school pupils. We will also show the results of some problem solving activities among 19 grade 8 pupils at our school. We analysed their problem solving strategies and compared our findings with the results of other research works.
  • Fehleranalyse beim Lösen von offenen Aufgaben Ergebnisse einer empirischen Studie in der Grundschule
    83-113
    Views:
    12
    Open problems play a key role in mathematics education, also in primary school. However, children in primary school work in many relations in a different way from learner in secondary school. Therefore, the (possibly) first confrontation with an open task could be problematical. Within the framework of an international paper and pencil test it was examined how far children of primary school notice the openness of a task and which mistakes they do during working on that task. In particularly are meant by openness different interpretations of the task, which all lead to a set of numbers with more than one element as a result. For evaluation, a common classification system was adapted by slightly modification of the original system.
  • Manipulatives and semiotic tools of Game of Go as playful and creative activity to learn mathematics in early grades in France
    197-206
    Views:
    63

    This research develops resources to teach mathematics in French primary school by using the game of Go. A group of searchers, teachers and go players meet at university to produce teaching resources. These resources are implemented in the classroom. Then the group evaluate this implementation and improve the resources. The aim of this classroom research is to study the opportunities of the game of Go to learn mathematics and to propose a teacher training course to implement the game of Go in French primary schools in accordance with the French syllabus. Game of Go appears as a manipulative and semiotic tool to learn mathematics at primary school.

    Subject Classification: 97D50, 97U60

  • Preliminary e ects of mathematics curriculum development for primary school student teachers in Sárospatak Comenius Campus
    95-107
    Views:
    30
    Hungarian students' mathematics performance has been getting weaker in the past few years. A possible solution to stop this tendency is to develop curriculum. Therefore, Hungarian researchers have been refining a particular framework of curriculum development in primary school teacher training programmes. The national curriculum is designed on the assumption that learning can be broken into a sequence of levels and students can evenly succeed in gaining knowledge at successive levels. In this paper, we want to discuss how to reduce students' difficulties with different background to grow competence at successive levels.
  • Shall we use one more representation? Suggestions about establishing the notion of recursion in teaching informatics in primary schools
    209-229
    Views:
    27
    Among the most prominent developmental tasks of primary school education one finds increasing pupils' cognitive capacity with especial regard to observing, interpreting, coding and proving skills, which form an integral part of information and communication culture.
    Info-technology (problem solving with the tools and methods of informatics), a subject matter within informatics, provides outstanding opportunities to reach the aims outlined above.
    This study presents methodological ideas related to the subfield Algorithmization and data modelling of Info-technology. More specifically, it presents teaching methods to be applied while establishing the notion of recursion in grades 3–8 of primary education, and at the same time it also focuses on various realization possibilities of the prominent developmental tasks mentioned above.
  • What does ICT help and does not help?
    33-49
    Views:
    114

    Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
    Bruner's too.
    At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
    I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
    In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
    I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.

    Subject Classification: 97U70

  • Methodological questions of digital teaching material development made in the subject of mathematics
    25-41
    Views:
    37
    In the methodology of mathematics teaching, the selection and the manner of using applicable digital teaching materials appeared as a new element. As the number of digital teaching materials applicable in education is constantly increasing, their purposeful use is rarely discussed. In what areas digital teaching materials can be used in mathematics? What are the problems for which they could provide a solution? Shall we use them besides traditional solutions, or instead?
    The authors of this article have had the opportunity to participate in projects aiming to develop digital learning materials on various occasions. During the implementation of the projects, they needed to make methodological compromises at various points.
    In our article, we are seeking a more emphatic use of methodology belonging to digital teaching materials, drawing on the experiences of three implemented projects. Our aim is to draw the attention to the anomalies we found in the implementation of the projects, which must be taken into consideration in new developments already at the planning stage.
  • Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
    183-195
    Views:
    91

    Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.

    Subject Classification: 97G20, 97-U6, 97A40

  • Virtual manipulatives in inquiry-based approach of 3D problems by French 5th graders
    229-240
    Views:
    71

    The aim of this research is to study the appropriation of a 3D environment by learners in an a-didactical situation of problem solving. We try to evaluate the relevance of the virtual 3D environment in the development of students' cognitive and metacognitive abilities. We implanted a problem-solving activity related to a 3D cube situation with an empty part in the cube in different French primary school areas in May 2019. In the experimental group each learner works individually with a PC-computer where the virtual environment ANIPPO is implemented. In the control group the pupils work in a traditional class environment. We present the results of this pre-experimentation.

    Subject Classification: 97D50, 97U60, 97U70

  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • The use of different representations in teaching algebra, 9 th grade (14-15 years old)
    29-42
    Views:
    32
    Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
    In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability.
  • Analysis of the affective factors of learning mathematics among teacher trainees
    225-254
    Views:
    37
    The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
    The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
    In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training.
  • Examples of analogies and generalizations in synthetic geometry
    19-39
    Views:
    29
    Teaching tools and different methods of generalizations and analogies are often used at different levels of education. Starting with primary grades, the students can be guided through simple aspects of collateral development of their studies. In middle school, high school and especially in entry-level courses in higher education, the extension of logical tools are possible and indicated.
    In this article, the authors present an example of generalization and then of building the analogy in 3-D space for a given synthetic geometric problem in 2-D.
    The idea can be followed, extended and developed further by teachers and students as well.
  • Comparative geometry on plane and sphere: didactical impressions
    81-101
    Views:
    4
    Description of experiences in teaching comparative geometry for prospective teachers of primary schools. We focus on examples that refer to changes in our students' thinking, in their mathematical knowledge and their learning and teaching attitudes. At the beginning, we expected from our students familiarity with the basics of the geographic coordinate system, such as North and South Poles, Equator, latitudes and longitudes. Spherical trigonometry was not dealt with in the whole project.
  • Prime building blocks in the mathematics classroom
    217-228
    Views:
    148

    This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.

    Subject Classification: F60, C30, E40, U60

  • Dynamic geometry systems in teaching geometry
    67-80
    Views:
    29
    Computer drawing programs opened up new opportunities in the teaching of geometry: they make it possible to create a multitude of drawings quickly, accurately and with flexibly changing the input data, and thus make the discovery of geometry an easier process. The objective of this paper is to demonstrate the application possibilities of dynamic geometric systems in primary and secondary schools, as well as in distance education. A general characteristic feature of these systems is that they store the steps of the construction, and can also execute those steps after a change is made to the input data. For the demonstration of the applications, we chose the Cinderella program. We had an opportunity to test some parts of the present paper in an eighth grade primary school.
  • General key concepts in informatics: data
    135-148
    Views:
    31
    "The system of key concepts contains the most important key concepts related to the development tasks of knowledge areas and their vertical hierarchy as well as the links of basic key concepts of different knowledge areas. When you try to identify the key concepts of a field of knowledge, you should ask the following questions: Which are the concepts that are the nodes of the concept net and can be related to many other concepts? Which are the concepts that necessarily keep re-appearing in different contexts when interpreting what you have learnt before? Which are the concepts that arrange specific facts in structures, which contribute to interpreting and apprehending new information and experience? Which are the concepts that – if you are unfamiliar with and unaware of – inhibits you in systematizing various items of knowledge or sensibly utilizing them?" [9] One of the most important of these concepts is the data.
  • Key concepts in informatics: documents
    97-115
    Views:
    32
    "The system of key concepts contains the most important key concepts related to the development tasks of knowledge areas and their vertical hierarchy as well as the links of basic key concepts of different knowledge areas. When you try to identify the key concepts of a field of knowledge, you should ask the following questions: Which are the concepts that are the nodes of the concept net and can be related to many other concepts? Which are the concepts that necessarily keep re-appearing in different contexts when interpreting what you have learnt before? Which are the concepts that arrange specific facts in structures, which contribute to interpreting and apprehending new information and experience? Which are the concepts that – if you are unfamiliar with and unaware of – inhibits you in systematizing various items of knowledge or sensibly utilizing them?" [8] One of the most important of these concepts is the document.
  • Probabilistic thinking, characteristic features
    13-36
    Views:
    35
    This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think.
  • The effects of chess education on mathematical problem solving performance
    153-168
    Views:
    50
    We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods.
  • Better understanding mathematics by algorithmic thinking and computer programming
    295-305
    Views:
    117

    Tamás Varga’s mathematics education experiment covered not just mathematics, but also other related topics. In many of his works he clearly stated that computer science can support the understanding of mathematics as much as mathematics supports informatics. On the other hand, not much later than the introduction of the new curriculum in 1978, personal computers started to spread, making it possible to teach informatics in classes and in extracurricular activities. Varga’s guided discovery approach has a didactic value for other age groups as well, not only in primary school. Its long-lasting effect can be observed even in present times. Having reviewed several educational results in the spirit of Tamás Varga, we have decided to present an extracurricular course. It is an open study group for age 12-18. Students solve problems by developing Python programs and, according to our experiences, this results in a deeper understanding of mathematical concepts.

    Subject Classification: 97B10, 97B20, 97D50, 97N80, 97P20, 97P30, 97P40, 97P50, 97U70

  • Katalin Juhász (1952-2012)
    1-2
    Views:
    9
    Katalin Juhász was born in 1952, in Tarnaméra (Hungary), where she also completed her primary school studies. She finished Erzsébet Szilágyi Highschool, Eger, in 1971 and she graduated in mathematics from Lajos Kossuth University (KLTE), Debrecen, in 1976. That year she married a physicist and together they brought up their son.
  • Transition from arithmetic to algebra in primary school education
    225-248
    Views:
    35
    The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed.