Search
Search Results
-
Using the computer to visualise graph-oriented problems
15-32Views:34The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant. -
Numerical mathematics with GeoGebra in high school
363-378Views:44We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented. -
The effect of augmented reality assisted geometry instruction on students' achiveement and attitudes
177-193Views:77In this study, geometry instruction's academic success for the students and their attitudes towards mathematics which is supported by education materials of Augmented Reality (AR) and its effect on the acceptance of AR and its usage by teachers and students have been researched. Under this research, ARGE3D software has been developed by using augmented reality technology as for the issue of geometric objects that is contained in the mathematics curriculum of 6th class of primary education. It has been provided with this software that three-dimensional static drawings can be displayed in a dynamic and interactive way. The research was conducted in two different schools by an experiment and control group. In the process of data collection, Geometry Achievement Test (GAT), Geometric Reasoning Test (GRT), Attitudes Scale for Mathematics (ASM), students' math lecture notes, semi-structured interviews with teachers and students and observation and video recordings were used. Results showed that geometry instruction with ARGE3D increased students' academic success. In addition, it was found that geometry instruction with ARGE3D became more effective on students' attitudes that had negative attitudes towards mathematics and it also provided support to reduce fear and anxiety. -
Teaching graph algorithms with Visage
35-50Views:35Combinatorial optimization is a substantial pool for teaching authentic mathematics. Studying topics in combinatorial optimization practice different mathematical skills, and because of this have been integrated into the new Berlin curriculum for secondary schools. In addition, teachers are encouraged to use adequate teaching software. The presented software package "Visage" is a visualization tool for graph algorithms. Using the intuitive user interface of an interactive geometry system (Cinderella), graphs and networks can be drawn very easily and different textbook algorithms can be visualized on the graphs. An authoring tool for interactive worksheets and the usage of the build-in programming interface offer new ways for teaching graphs and algorithms in a classroom. -
GeoGebra in mathematics teaching
101-110Views:46GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools. -
Design guidelines for dynamic mathematics worksheets
311-323Views:28In a Math and Science Partnership project in Florida, middle school teachers are using the dynamic mathematics software GeoGebra to create interactive online worksheets for mathematics learning. Formative evaluation of these materials based on design principles of multimedia learning has lead to a list of specific design guidelines for such dynamic worksheets that we present in this article. These design guidelines can give advice both for the creation of new dynamic worksheets and the evaluation of existing material on the Internet. -
Dynamic methods in teaching geometry at different levels
1-13Views:41In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]). -
A proposal for an IOI Syllabus
193-216Views:58The International Olympiad in Informatics (IOI) is the premier competition in computing science for secondary education. The competition problems are algorithmic in nature, but the IOI Regulations do not clearly define the scope of the competition. The international olympiads in physics, chemistry, and biology do have an official syllabus, whereas the International Mathematical Olympiad has made the deliberate decision not to have an official syllabus. We argue that the benefits of having an official IOI Syllabus outweigh the disadvantages. Guided by a set of general principles we present a proposal for an IOI Syllabus, divided into four main areas: mathematics, computing science, software engineering, and computer literacy. -
Learning and teaching combinatorics with Sage
389-398Views:52Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
What does ICT help and does not help?
33-49Views:117Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
Bruner's too.
At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.Subject Classification: 97U70
-
Teaching of old historical mathematics problems with ICT tools
13-24Views:22The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way. -
WMI2: interactive mathematics on the web
393-405Views:16After 5 years of experiments and feedback we decided to continue the software development on WebMathematics Interactive, a web-based e-learning tool, rewriting it from scratch. The demonstration version of WebMathematics Interactive 2 (WMI2) has been shown to the expert audience on the CADGME conference. In this article we summarize the development goals and results. -
Interactive web portals in mathematics
347-361Views:19Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:33Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
Examining continuity/discontinuity of a function by using GeoGebra
241-257Views:28The possibility to visualize the things with the help of today's dynamic software (GeoGebra being one of them), enables the students to see and explore mathematical relations and concepts that were difficult to be presented in the past, prior to the state-of-the-art technologies. In methodological sense, the contribution of this paper lies in the presentation of a set of visualizations designed to help students better understand and explore the basic calculus concepts such as continuity at a point, to examine discontinuity at a point, to display discontinuities and the relations between continuity and differentiability of single variable functions. In technical sense, this paper presents creative GeoGebra applets which offer new possibilities that could be of a vital importance for the future development of e-learning of College mathematics. -
Teaching XML
317-335Views:33The author has been teaching XML at the Faculty of Informatics, University of Debrecen since the end of the nineties. This paper gives an overview of XML technology from an educators viewpoint that is based on the experience that the author has gained teaching XML over the years. A detailed description of the XML course is provided. Methodological issues are also discussed. -
Forming the concept of parameter with examples of problem solving
201-215Views:34Pupils are encountering difficulties with learning algebra. In order for them to understand algebraic concepts, particularly the concept of parameter it was decided by the teacher of mathematics and Information Technology to integrate the teaching of these two subjects. The aim of this study is to investigate whether, and to what degree, software can be useful in process of forming the concept of parameter. This longitudinal study was conducted in a junior high school (13-16 year old children) using different computer programs. -
Programming Theorems and Their Applications
213-241Views:123One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.
Subject Classification: D40